itk中的一些图像处理
文章目录
- 1.BinomialBlurImageFilter计算每个维度上的最近邻居平均值
- 2.高斯平滑
- 3.图像的高阶导数 RecursiveGaussianImageFilter
- 4.均值滤波
- 5.中值滤波
- 6.离散高斯平滑
- 7.曲率驱动流去噪图像 CurvatureFlowImageFilter
- 8.由参数alpha和beta控制的幂律自适应直方图均衡化
- 9.Canny 边缘检测
- 10.Sobel边缘检测和基于过零的边缘检测
保存图像和读取图像
import itk
import cv2
import matplotlib.pyplot as plt
import numpy as npdef saveImage(inImage,savePath):writer = itk.ImageFileWriter[type(inImage)].New()writer.SetFileName(savePath)writer.SetInput(inImage)writer.Update()PixelType = itk.UC
Dimension = 2
ImageType = itk.Image[PixelType, Dimension]
imagePath1 = r'D:\svnproject\drrimage.tif'
reader1 = itk.ImageFileReader[ImageType].New()
reader1.SetFileName(imagePath1)
reader1.Update()
image1 = reader1.GetOutput()
1.BinomialBlurImageFilter计算每个维度上的最近邻居平均值
#BinomialBlurImageFilter计算每个维度上的最近邻居平均值。根据用户的指定,该过程将重复多次。原则上,经过大量的迭代,结果将接近高斯卷积。
#https://examples.itk.org/src/filtering/smoothing/blurringanimageusingabinomialkernel/documentation
#number_of_repetitions(整型)值越大,图像越模糊
def SmoothingWithBinomialKernel(inputImage,number_of_repetitions):ImageType = type(inputImage)binomialFilter = itk.BinomialBlurImageFilter[ImageType,ImageType].New()binomialFilter.SetInput(inputImage)binomialFilter.SetRepetitions(number_of_repetitions)rescaler = itk.RescaleIntensityImageFilter[ImageType, ImageType].New()rescaler.SetInput(binomialFilter.GetOutput())rescaler.SetOutputMinimum(0)rescaler.SetOutputMaximum(255)outputFileName = 'outImage_'+str(number_of_repetitions)+'.png'saveImage(rescaler.GetOutput(),outputFileName)return rescaler.GetOutput()resImage1 = SmoothingWithBinomialKernel(image1,1)
resImage2 = SmoothingWithBinomialKernel(image1,10)
resImage3 = SmoothingWithBinomialKernel(image1,20)
resImage4 = SmoothingWithBinomialKernel(image1,50)
resImage5 = SmoothingWithBinomialKernel(image1,100)
resImage6 = SmoothingWithBinomialKernel(image1,150)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('repetitions1')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('repetitions10')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('repetitions20')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('repetitions50')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('repetitions100')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('repetitions150')
plt.show()
结果:
2.高斯平滑
#通过高斯核卷积计算图像的平滑。 https://examples.itk.org/src/filtering/smoothing/computessmoothingwithgaussiankernel/documentation?highlight=smooth
# sigmaValue(浮点型,可以大于1.0)值越大,图像越模糊
def SmoothingWithGaussianKernel(inputImage,sigmaValue):ImageType = type(inputImage)smoothFilter = itk.SmoothingRecursiveGaussianImageFilter[ImageType, ImageType].New()smoothFilter.SetInput(inputImage)smoothFilter.SetSigma(sigmaValue)outputFileName = 'outImage_'+str(sigmaValue)+'.png'saveImage(smoothFilter.GetOutput(),outputFileName)return smoothFilter.GetOutput()#高斯平滑
resImage1 = SmoothingWithGaussianKernel(image1,0.1)
resImage2 = SmoothingWithGaussianKernel(image1,0.5)
resImage3 = SmoothingWithGaussianKernel(image1,0.9)
resImage4 = SmoothingWithGaussianKernel(image1,1.5)
resImage5 = SmoothingWithGaussianKernel(image1,2.5)
resImage6 = SmoothingWithGaussianKernel(image1,5.5)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('sigmaValue0.1')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('sigmaValue0.5')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('sigmaValue0.9')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('sigmaValue1.5')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('sigmaValue2.5')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('sigmaValue5.5')
plt.show()
结果:
3.图像的高阶导数 RecursiveGaussianImageFilter
#求图像的高阶导数。https://examples.itk.org/src/filtering/smoothing/findhigherderivativesofimage/documentation
#axisType--0表示x轴,1表示y轴 (突出边界)
def SmoothingWithHigherDerivatives(inputImage,axisType):ImageType = type(inputImage)gaussianFilter = itk.RecursiveGaussianImageFilter[ImageType, ImageType].New()gaussianFilter.SetInput(inputImage)gaussianFilter.SetDirection(axisType) #"x" axisgaussianFilter.SetSecondOrder()outputFileName = 'outImage_'+str(axisType)+'.png'saveImage(gaussianFilter.GetOutput(),outputFileName)return gaussianFilter.GetOutput()#求图像的高阶导数
resImage1 = SmoothingWithHigherDerivatives(image1,0)
resImage2 = SmoothingWithHigherDerivatives(image1,1)
plt.subplot(121),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('axisType X')
plt.subplot(122),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('axisType Y')
plt.show()
结果:
4.均值滤波
#对图像应用均值滤波。https://examples.itk.org/src/filtering/smoothing/meanfilteringofanimage/documentation
# radius(整型)值越大,图像越模糊
def SmoothingWithMeanFiltering(inputImage,radius):ImageType = type(inputImage)meanFilter = itk.MeanImageFilter[ImageType, ImageType].New()meanFilter.SetInput(inputImage)meanFilter.SetRadius(radius)outputFileName = 'outImage_'+str(radius)+'.png'saveImage(meanFilter.GetOutput(),outputFileName)return meanFilter.GetOutput()#均值滤波
resImage1 = SmoothingWithMeanFiltering(image1,1)
resImage2 = SmoothingWithMeanFiltering(image1,5)
resImage3 = SmoothingWithMeanFiltering(image1,10)
resImage4 = SmoothingWithMeanFiltering(image1,20)
resImage5 = SmoothingWithMeanFiltering(image1,40)
resImage6 = SmoothingWithMeanFiltering(image1,80)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('radius1')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('radius5')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('radius10')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('radius20')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('radius40')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('radius80')
plt.show()
结果:
5.中值滤波
#在图像上应用中值滤波。https://examples.itk.org/src/filtering/smoothing/medianfilteringofanimage/documentation
#radius(整型)值越大,图像越模糊
def SmoothingWithMedianFiltering(inputImage,radius):ImageType = type(inputImage)medianFilter = itk.MedianImageFilter[ImageType, ImageType].New()medianFilter.SetInput(inputImage)medianFilter.SetRadius(radius)outputFileName = 'outImage_'+str(radius)+'.png'saveImage(medianFilter.GetOutput(),outputFileName)return medianFilter.GetOutput()resImage1 = SmoothingWithMedianFiltering(image1,1)
resImage2 = SmoothingWithMedianFiltering(image1,5)
resImage3 = SmoothingWithMedianFiltering(image1,10)
resImage4 = SmoothingWithMedianFiltering(image1,20)
resImage5 = SmoothingWithMedianFiltering(image1,40)
resImage6 = SmoothingWithMedianFiltering(image1,80)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('radius1')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('radius5')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('radius10')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('radius20')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('radius40')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('radius80')
plt.show()
结果:
6.离散高斯平滑
#用离散高斯滤波器平滑图像。https://examples.itk.org/src/filtering/smoothing/smoothimagewithdiscretegaussianfilter/documentation
# variance(浮点型,可以大于1.0)值越大,图像越模糊
def SmoothWithDiscreteGaussianfilter(inputImage,variance):ImageType = type(inputImage)gaussianFilter = itk.DiscreteGaussianImageFilter[ImageType, ImageType].New()gaussianFilter.SetInput(inputImage)gaussianFilter.SetVariance(variance) outputFileName = 'outImage_'+str(variance)+'.png'saveImage(gaussianFilter.GetOutput(),outputFileName)return gaussianFilter.GetOutput()#离散高斯滤波器平滑图像
resImage1 = SmoothWithDiscreteGaussianfilter(image1,1.0)
resImage2 = SmoothWithDiscreteGaussianfilter(image1,4.0)
resImage3 = SmoothWithDiscreteGaussianfilter(image1,8.0)
resImage4 = SmoothWithDiscreteGaussianfilter(image1,15.0)
resImage5 = SmoothWithDiscreteGaussianfilter(image1,30.0)
resImage6 = SmoothWithDiscreteGaussianfilter(image1,50.0)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('variance1')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('variance4')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('variance8')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('variance15')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('variance30')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('variance50')
plt.show()
结果:
7.曲率驱动流去噪图像 CurvatureFlowImageFilter
#使用曲率驱动流去噪图像。https://examples.itk.org/src/filtering/anisotropicsmoothing/computecurvatureflow/documentation?highlight=denois
#time_step越大,迭代次数越多,图像越暗
def DenoiseImageWithCurvatureDrivenFlow(inputImagePath,number_of_iterations,time_step):PixelType = itk.FDimension = 2ImageType = itk.Image[PixelType, Dimension]reader = itk.ImageFileReader[ImageType].New()reader.SetFileName(inputImagePath)reader.Update()ImageType = type(reader.GetOutput())FilterType = itk.CurvatureFlowImageFilter[ImageType, ImageType]curvatureFlowFilter = FilterType.New()curvatureFlowFilter.SetInput(reader.GetOutput())curvatureFlowFilter.SetNumberOfIterations(number_of_iterations)curvatureFlowFilter.SetTimeStep(time_step)OutputImageType = itk.Image[itk.UC,2]RescaleFilterType = itk.RescaleIntensityImageFilter[ImageType, OutputImageType]rescaler = RescaleFilterType.New()rescaler.SetInput(curvatureFlowFilter.GetOutput())outputPixelTypeMinimum = itk.NumericTraits[itk.UC].min()outputPixelTypeMaximum = itk.NumericTraits[itk.UC].max()rescaler.SetOutputMinimum(outputPixelTypeMinimum)rescaler.SetOutputMaximum(outputPixelTypeMaximum)outputFileName = 'outImage_'+str(number_of_iterations)+'_'+str(time_step)+'.png'saveImage(rescaler.GetOutput(),outputFileName)return rescaler.GetOutput()#使用曲率驱动流去噪图像
resImage1 = DenoiseImageWithCurvatureDrivenFlow(imagePath1,1,0.5)
resImage2 = DenoiseImageWithCurvatureDrivenFlow(imagePath1,3,0.5)
resImage3 = DenoiseImageWithCurvatureDrivenFlow(imagePath1,6,0.5)
resImage4 = DenoiseImageWithCurvatureDrivenFlow(imagePath1,1,2.5)
resImage5 = DenoiseImageWithCurvatureDrivenFlow(imagePath1,3,2.5)
resImage6 = DenoiseImageWithCurvatureDrivenFlow(imagePath1,6,2.5)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('iterations1,time_step 0.5')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('iterations3,time_step 0.5')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('iterations6,time_step 0.5')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('iterations1,time_step 2.5')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('iterations3,time_step 2.5')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('iterations6,time_step 2.5')
plt.show()
结果:
8.由参数alpha和beta控制的幂律自适应直方图均衡化
# 应用由参数alpha和beta控制的幂律自适应直方图均衡化。
# https://examples.itk.org/src/filtering/imagestatistics/adaptivehistogramequalizationimagefilter/documentation?highlight=histogram
# 参数alpha控制了过滤器有多像经典直方图均衡化方法(alpha = 0),到过滤器有多像非锐化蒙版(alpha = 1)。
# 参数beta控制过滤器在多大程度上像非锐化蒙版(beta = 0)和过滤器在多大程度上像穿透(beta = 1,其中alpha = 1)。
# 参数窗口(或半径)控制计算局部统计信息的区域的大小。
# alpha:浮点型 beta:浮点型 radius:整型
def ImageHistogramEqualization(inputImage,alpha,beta,radius):ImageType = type(inputImage)histogramEqualization = itk.AdaptiveHistogramEqualizationImageFilter[ImageType].New()histogramEqualization.SetInput(inputImage)histogramEqualization.SetAlpha(alpha)histogramEqualization.SetBeta(beta)radiusArr = itk.Size[2]()radiusArr.Fill(radius)histogramEqualization.SetRadius(radiusArr)outputFileName = 'outImage_'+str(alpha)+'_'+str(beta)+'_'+str(radius)+'.png'itk.imwrite(histogramEqualization, outputFileName)return histogramEqualization.GetOutput()#自适应直方图均衡化
resImage1 = ImageHistogramEqualization(image1,0.0,1.0,3)
resImage2 = ImageHistogramEqualization(image1,1.0,0.0,3)
resImage3 = ImageHistogramEqualization(image1,0.5,0.5,3)
resImage4 = ImageHistogramEqualization(image1,0.0,1.0,7)
resImage5 = ImageHistogramEqualization(image1,1.0,0.0,7)
resImage6 = ImageHistogramEqualization(image1,0.5,0.5,7)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('alpha0.0,beta1.0,radius3')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('alpha1.0,beta0.0,radius3')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('alpha0.5,beta0.5,radius3')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('alpha0.0,beta1.0,radius7')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('alpha1.0,beta0.0,radius7')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('alpha0.5,beta0.5,radius7')
plt.show()
结果:
9.Canny 边缘检测
用之前的图像存在问题,以后有时间找原因
#使用 Canny 边缘检测过滤器检测边缘
#https://examples.itk.org/src/filtering/imagefeature/detectedgeswithcannyedgedetectionfilter/documentation?highlight=edge
def CannyEdgeDetectionImageFilter(inputImagePath,variance,lower_threshold,upper_threshold):InputPixelType = itk.FOutputPixelType = itk.UCDimension = 2InputImageType = itk.Image[InputPixelType, Dimension]OutputImageType = itk.Image[OutputPixelType, Dimension]reader = itk.ImageFileReader[InputImageType].New()reader.SetFileName(inputImagePath)cannyFilter = itk.CannyEdgeDetectionImageFilter[InputImageType, InputImageType].New()cannyFilter.SetInput(reader.GetOutput())cannyFilter.SetVariance(variance)cannyFilter.SetLowerThreshold(lower_threshold)cannyFilter.SetUpperThreshold(upper_threshold)rescaler = itk.RescaleIntensityImageFilter[InputImageType, OutputImageType].New()rescaler.SetInput(cannyFilter.GetOutput())rescaler.SetOutputMinimum(0)rescaler.SetOutputMaximum(255)outputFileName = 'outImage_'+str(variance)+'_'+str(lower_threshold)+'_'+str(upper_threshold)+'.png'saveImage(rescaler.GetOutput(),outputFileName)return rescaler.GetOutput()#Canny 边缘检测
imagePath1 = r'D:\dell\picture\lena.png'
resImage1 = CannyEdgeDetectionImageFilter(imagePath1,0.1,0,255)
resImage2 = CannyEdgeDetectionImageFilter(imagePath1,0.5,0,255)
resImage3 = CannyEdgeDetectionImageFilter(imagePath1,1.0,0,255)
resImage4 = CannyEdgeDetectionImageFilter(imagePath1,5.0,0,255)
resImage5 = CannyEdgeDetectionImageFilter(imagePath1,10.0,0,255)
resImage6 = CannyEdgeDetectionImageFilter(imagePath1,50.0,0,255)
plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('variance0.1')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('variance0.5')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('variance1.0')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('variance5.0')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('variance10')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('variance50')
plt.show()
结果:
10.Sobel边缘检测和基于过零的边缘检测
#将 SobelEdgeDetectionImageFilter 应用于图像
#https://examples.itk.org/src/filtering/imagefeature/sobeledgedetectionimagefilter/documentation?highlight=edge
def SobelEdgeDetectionImageFilter(inputImagePath):input_image = itk.imread(inputImagePath, pixel_type=itk.F)output_image = itk.sobel_edge_detection_image_filter(input_image)rescaler = itk.RescaleIntensityImageFilter[type(output_image), itk.Image[itk.UC, 2]].New()rescaler.SetInput(output_image)rescaler.SetOutputMinimum(0)rescaler.SetOutputMaximum(255)outputFileName = 'outImage_obelEdgeDetection.png'saveImage(rescaler.GetOutput(),outputFileName)return rescaler.GetOutput()#基于过零的边缘检测
#https://examples.itk.org/src/filtering/imagefeature/zerocrossingbasededgedecor/documentation?highlight=edge
def ZerocrossingEdgeDetecor(inputImagePath,variance=5.0):FloatImageType = itk.Image[itk.F, 2]FilterType = itk.ZeroCrossingBasedEdgeDetectionImageFilter[FloatImageType, FloatImageType]input_image = itk.imread(inputImagePath, pixel_type=itk.F)edgeDetector = FilterType.New()edgeDetector.SetInput(input_image)edgeDetector.SetVariance(variance)rescaler = itk.RescaleIntensityImageFilter[type(edgeDetector.GetOutput()), itk.Image[itk.UC, 2]].New()rescaler.SetInput(edgeDetector.GetOutput())rescaler.SetOutputMinimum(0)rescaler.SetOutputMaximum(255)outputFileName = 'outImage_ZerocrossingEdgeDetection'+str(variance)+'.png'saveImage(rescaler.GetOutput(),outputFileName)return rescaler.GetOutput()#Sobel边缘检测
resImage1 = SobelEdgeDetectionImageFilter(imagePath1)# 基于过零的边缘检测
resImage2 = ZerocrossingEdgeDetecor(imagePath1,0.1)
resImage3 = ZerocrossingEdgeDetecor(imagePath1,0.5)
resImage4 = ZerocrossingEdgeDetecor(imagePath1,1.0)
resImage5 = ZerocrossingEdgeDetecor(imagePath1,5.0)
resImage6 = ZerocrossingEdgeDetecor(imagePath1,20.0)plt.subplot(231),plt.imshow(itk.GetArrayFromImage(resImage1),'gray'),plt.title('Sobel')
plt.subplot(232),plt.imshow(itk.GetArrayFromImage(resImage2),'gray'),plt.title('variance0.1')
plt.subplot(233),plt.imshow(itk.GetArrayFromImage(resImage3),'gray'),plt.title('variance0.5')
plt.subplot(234),plt.imshow(itk.GetArrayFromImage(resImage4),'gray'),plt.title('variance1')
plt.subplot(235),plt.imshow(itk.GetArrayFromImage(resImage5),'gray'),plt.title('variance5')
plt.subplot(236),plt.imshow(itk.GetArrayFromImage(resImage6),'gray'),plt.title('variance20')
plt.show()
结果:
相关文章:

itk中的一些图像处理
文章目录1.BinomialBlurImageFilter计算每个维度上的最近邻居平均值2.高斯平滑3.图像的高阶导数 RecursiveGaussianImageFilter4.均值滤波5.中值滤波6.离散高斯平滑7.曲率驱动流去噪图像 CurvatureFlowImageFilter8.由参数alpha和beta控制的幂律自适应直方图均衡化9.Canny 边缘…...

Endless lseek导致的SQL异常
最近碰到同事咨询的一个问题,在执行一个函数时,发现会一直卡在那里。 strace抓了下发现会话一直在执行lseek,大致情况如下: 16:13:55.451832 lseek(33, 0, SEEK_END) 1368064 <0.000037> 16:13:55.477216 lseek(33, 0, SE…...

JUC-day01
JUC-day01 什么是JUC线程的状态: wait sleep关键字:同步锁 原理(重点)Lock接口: ReentrantLock(可重入锁)—>AQS CAS线程之间的通讯 1 什么是JUC 1.1 JUC简介 在Java中,线程部分是一个重点,本篇文章说的JUC也是关于线程的。JUC就是java.util .con…...

Mind+Python+Mediapipe项目——AI健身之跳绳
原文:MindPythonMediapipe项目——AI健身之跳绳 - DF创客社区 - 分享创造的喜悦 【项目背景】跳绳是一个很好的健身项目,为了获知所跳个数,有的跳绳上会有计数器。但这也只能跳完这后看到,能不能在跳的过程中就能看到,…...
数据库概述
20世纪60年代后期,就出现了数据库技术。取得成就如下:造就了四位图灵奖得主发展成为以数据建模和DBMS核心技术为主,内容丰富的一门学科。带动了一个巨大的软件产业-DBMS产品及其相关工具和解决方案。四个基本概念数据数据是数据库中存储的基本…...

【已解决】解决IDEA的maven刷新依赖时出现Connot reconnect错误
前言 小编我将用CSDN记录软件开发求学之路上亲身所得与所学的心得与知识,有兴趣的小伙伴可以关注一下!也许一个人独行,可以走的很快,但是一群人结伴而行,才能走的更远!让我们在成长的道路上互相学习&#…...
动态链接库(.so)文件的变编译和引用、执行
动态链接库(.so)文件的变编译和引用 动态链接库:SO(Shared Object)是一种动态链接库,也被称为共享库。它是一种可被多个程序共享使用的二进制代码库,其中包含已编译的函数和代码。与静态链接库不同,动态链接…...
linux(centos8)文件解压命令
linux解压命令tar 解压命令常用解压命令1 [.tar] 文件 解压到当前文件夹2 [.tar.gz] 文件 解压到当前文件夹3 [.tar] 解压到指定文件夹 -C 必须是大写unzip 解压命令常用解压命令1 [.zip]解压到当前文件夹2 [.zip] 解压到指定文件夹2 [.zip] 解压到指定文件夹(强行覆…...

阅读笔记6——通道混洗
一、逐点卷积 当前先进的轻量化网络大都使用深度可分离卷积或组卷积,以降低网络的计算量,但这两种操作都无法改变特征图的通道数,因此需要使用11的卷积。总体来说,逐点的11卷积有如下两点特性: 可以促进通道之间的信息…...

上海亚商投顾:沪指失守3300点 卫星导航概念全天强势
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。市场情绪指数早间低开后震荡回升,沪指盘中一度翻红,随后又再度走低,创业板指午后跌近1%。…...

疯狂的SOVA:Android银行木马“新标杆”
2021年8月初,一款针对Android银行APP的恶意软件出现在人们的视野中,ThreatFabric 安全研究人员首次发现了这一木马,在其C2服务器的登录面板,研究人员发现,攻击者将其称之为SOVA。 ** SO** ** V** ** A简介** 在俄语中…...

汽车零部件企业数字工厂管理系统建设方案
在汽车零部件制造领域,伴随工业信息化与机器人化,制造模式逐渐从 CAD/CAE/CAM 数字化设计及加工走向全产品周期虚拟现实的数字化工厂管理系统平台,实现虚拟现实设计制造,防范产品缺陷并预防设备故障,大幅提高生产效率。…...
【线程同步工具】Semaphore源码解析
控制对资源的一个或多个副本的并发访问 Java API 提供了一种信号量机制 Semaphore。 一个信号量就是一个计数器, 可用于保护对一个或多个共享资源的访问。 当一个线程要访问多个共享资源中的一个时,它首先需要获得一个信号量。如果信号量内部的计数器的…...
获取实时天气
一、用天气API(需要付费) 网址:https://www.tianqiapi.com/请求方式及url:请求方式:GET接口地址:https://tianqiapi.com/free/day请求示例https://www.tianqiapi.com/free/day?appid_____&appsecret__…...

【数据库】redis数据持久化
目录 数据持久化 一, RDB 1, 什么是RDB 2,持久化流程 3, 相关配置 案例演示: 4, 备份和恢复 1、备份 2、恢复 3,优势 4, 劣势 二,AOF 1,什么是A…...

前端编译、JIT编译、AOT编译
一、前端编译:java设计之初就是强调跨平台,通过javac将源文件编译成于平台无关的class文件, 它定义了执行 Java 程序所需的所有信息(许多Java"语法糖",是在这个阶段完成的,不依赖虚拟机ÿ…...
父子组件中,子组件调用父组件的方法
父子组件中,子组件调用父组件的方法 方法一:直接在子组件中通过this.$parent.event来调用父组件的方法 父组件 <template><p><child>父组件</child></p> </template> <script>import child from ~/compone…...

第七章.深度学习
第七章.深度学习 7.1 深度学习 深度学习是加深了层的深度神经网络。 1.加深层的好处 1).可以减少网络的参数数量 5*5的卷积运算示例: 重复两次3*3的卷积层示例: 图像说明: ①.一次5 * 5的卷积运算的区域可以由两次3 * 3的卷积运算抵消&a…...

小学生学Arduino---------点阵(三)动态的显示与清除
学习目标: 1、理解“整数值”的概念与使用 2、理解“N1”指令的意义 3、掌握“反复执行多次”指令的使用 4、掌握屏幕模块的清除功能指令 5、理解“反复执行”指令与“反复执行多次”指令的嵌套使用 6、搭建电路图 7、编写程序 效果: 整数包括…...

opencv图片处理
目录1 图片处理1.1 显示图片1.2 旋转图片1.3 合并图片1.4、Mat类1.4.1、像素的储存结构1.4.2、访问像素数据1.6、rgb转灰度图1.7、二值化1.8、对比度和亮度1.9、图片缩放1.9.1、resize临近点算法双线性内插值1.9.2、金字塔缩放1.10、图片叠加1 图片处理 1.1 显示图片 #includ…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...