GPT-4——比GPT-3强100倍
GPT-4——比GPT-3强100倍
当前世界上最强大的人工智能系统当属ChatGPT。推出2个月用户数就突破1亿。ChatGPT是当下最炙手可热的话题,科技圈几乎人人都在讨论。这边ChatGPT的热度还在不断攀升,另一边来自《纽约时报》的最新报道称ChatGPT即将被自家超越,OpenAI预计将于2023年第一季度发布GPT-4。新的GPT-4将比ChatGPT背后的GPT-3.5强大许多,比GPT-3强100倍!

GPT-4 建立在 GPT-3 之上,GPT-3 于 2020 年 5 月发布,并迅速成为使用最广泛的自然语言处理模型之一。 GPT-4 比 GPT-3 更大更强,与 GPT-3 的 1750 亿个参数相比,GPT-4 有 170 万亿个参数。 这使得 GPT-4 能够更准确、更流畅地处理和生成文本。
GPT-4的主要优势之一是它能够理解和生成广泛的自然语言文本,包括正式和非正式语言。这使得它广泛适用于各种应用场景,如语言翻译、文本摘要和问题解答等。GPT-4还能够从自定义数据中学习,这意味着它可以针对特定任务和领域进行微调,使其具有高度的通用性和适应性。
除了自然语言处理能力外,GPT-4 还扩展了完成其他任务的能力,如图像和视频生成。 这是因为 GPT-4 建立在 Transformer 架构之上,该架构已被证明对包括计算机视觉在内的各种机器学习任务有效。
GPT-4可以用于如下领域:
- 语言翻译:GPT-4理解和生成自然语言文本的能力对机器翻译非常有用。它可以在翻译文本的大数据集上进行训练,以提高其准确性和流畅性。
- 文本摘要:GPT-4生成类人文本的能力对于文本摘要等任务非常有用,其输出的文本更易于理解和阅读。
- 回答问题:GPT-4能够回答问题并提供详细解释,这对客户服务或技术支持等应用场景十分有用。
- 图像和视频生成:GPT-4构建在Transformer架构上,该架构已被证明对包括计算机视觉在内的各种机器学习任务有效。这意味着GPT-4可以用于图像和视频生成等任务。
- 其他领域:GPT-4的多功能性和适应性使其成为通用自然语言处理任务的理想工具。它可以用于聊天机器人、自动化新闻写作,甚至创意写作等领域。
总体而言,OpenAI的GPT-4有望对世界产生重大影响,为一系列令人兴奋的创新和创造铺平道路。
∗∗∗\ast\ast\ast ∗∗∗

GPT-4为我们描绘了美好的未来蓝图,但OpenAI首席执行官Sam Altman却劝大家冷静,ChatGPT的超预期表现让人们对GPT-4抱有过高的期待,但现实可能会让大家“失望”。我们看一下Sam Altman的一份声明:
OpenAI首席执行官Sam Altman表示,围绕OpenAI的下一代大语言模型GPT-4的炒作已经过头了。Sam Altman声称,新模型不会像许多人预测的那样具有超过 100 万亿的参数规模。他还警告说,只有当公司确信可以安全、负责任地完成这项工作时,才会发布。
微软“新Bing”号称已经采用了GPT-4,有条件的可以去试用一下。我试用过后发现,除了输出带上了参考链接外,其他确实没有特别让人兴奋的地方。也许正如Sam Altman所言,对ChatGPT的炒作已经过热了,是时候冷静下来思考关于ChatGPT真正重要的问题了,比如人工智能系统的行为塑造与决策权归属。
相关文章:
GPT-4——比GPT-3强100倍
GPT-4——比GPT-3强100倍 当前世界上最强大的人工智能系统当属ChatGPT。推出2个月用户数就突破1亿。ChatGPT是当下最炙手可热的话题,科技圈几乎人人都在讨论。这边ChatGPT的热度还在不断攀升,另一边来自《纽约时报》的最新报道称ChatGPT即将被自家超越&…...
echart中x轴数据过多时展示不全
项目中遇到需要展示一些柱状图,之前做相关功能时,横坐标x轴一直用的是时间,所以没有注意到这个问题。 如下图所示: 当x轴显示的是”人名“这种类型的值的时候,这种显示情况就有问题了,这样就不会知道&…...
关于GIS原理的实际分析应用题的一些解法
话不多说,看题.01 公园选址问题1题目请写出利用GIS技术进行公园选址的空间操作步骤。其中公园选址条件:1)为了安静舒适,要求该园区离主要公路1公里以外,且交通方便,离主要公路3公里以内。2)公园最好依附在大…...
混合精度训练,FP16加速训练,降低内存消耗
计算机中的浮点数表示,按照IEEE754可以分为三种,分别是半精度浮点数、单精度浮点数和双精度浮点数。三种格式的浮点数因占用的存储位数不同,能够表示的数据精度也不同。 Signed bit用于控制浮点数的正负,0表示正数,1表…...
每天五分钟机器学习:新的大规模的机器学习机制——在线学习机制
本文重点 本节课程我们将学习一种新的大规模的机器学习机制--在线学习机制。在线学习机制让我们可以模型化问题。在线学习算法指的是对数据流进行学习而非离线的静态数据集的学习。许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不将数据存储到数据库中便顺…...
计算机组成原理错题
静态RAM(SRAM)和动态RAM(DRAM)的基本电路图不同,因此可以通过观察存储器的基本电路图来判断它属于哪一类。 静态RAM的基本电路图包括一个存储单元和一个数据选择器。每个存储单元由一个触发器(flip-flop&a…...
数学基础整理
收纳一些天天忘的结论qwq 线性求逆元 invi(p−pi)invpmodiinv_i(p-\dfrac{p}{i})\times inv_{p\bmod i}invi(p−ip)invpmodi 卡特兰数 组合数公式:HnC2nn−C2nn−1H_nC_{2n}^n-C_{2n}^{n-1}HnC2nn−C2nn−1 递推式:HnHn−1(4n−2)n1H_n\d…...
JavaWeb11-死锁
目录 1.死锁定义 1.1.代码演示 1.2.使用jconsole/jvisualvm/jmc查看死锁 ①使用jconsole:最简单。 ②使用jvisualvm:(Java虚拟机)更方便,更直观,更智能,更高级,是合适的选择。 …...
堆的概念和结构以及堆排序
前言 普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,…...
【Linux学习笔记】1.Linux 简介及安装
前言 本章介绍Linux及其安装方法。 Linux 简介 Linux 内核最初只是由芬兰人林纳斯托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的。 Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 POSIX 和 UNIX 的多…...
代码练习2~
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。def …...
微信小程序 之 云开发
一、概念1. 传统开发模式2. 新开发模式 ( 云开发模式 )3. 传统、云开发的模式对比4. 传统、云开发的项目流程对比5. 云开发的定位1. 个人的项目或者想法,不想开发服务器,直接使用云开发2. 某些公司的小程序项目是使用云开发的,但是不多&#…...
程序员的三门课,学习成长笔记
最近是有了解到一本好书,叫做程序员的三门课在这本书的内容当中我也确实汲取到了很多前辈能够传达出来的很多关于程序员职业规划以及成长路线上的见解,令我受益匪浅,故此想要把阅读完的每一章节结合自己的工作经验做一个精细化的小结…...
[技术经理]01 程序员最优的成长之路是什么?
00前言 谈起程序员的职业规划,针对大部分的职场人士,最优的成长之路应该是走技术管理路线,而不是走技术专家路线。 01关键的一步 中国自古就有“学而优则仕”的传统,发展到今天,在我们的现代企业里面,尤…...
linux集群技术(三)--七层负载均衡-nginx
nginx特点nginx优势、缺点生产架构nginx 7层负载均衡语法示例nginx负载均衡算法测试案例生产案例 1.nginx特点 1. 功能强大,性能卓越,运行稳定。 2. 配置简单灵活。 3. 能够自动剔除工作不正常的后端服务器。 4. 上传文件使用异步模式。client---nginx---web1 web2 web3 lvs同…...
阿里云物联网平台设备模拟器
在使用阿里云物联网平台过程中,如果开始调试没有实际的物理设备,可以考虑在阿里云物联网平台使用官方自带的模拟器进行调试。不过也可以通过叶帆科技开发的阿里云物联网平台设备模拟器AliIoTSimulator进行调试,AliIoTSimulator可以独立运行&a…...
docker全解
目录说明docker简介为什么是docker容器与虚拟机比较容器发展简史传统虚拟机技术容器虚拟化技术docker能干什么带来技术职级的变化开发/运维(Devops)新一代开发工程师Docker应用场景why docker?docker的优势docker和dockerHub官网Docker安装CentOS Docker…...
Vue3 基础
Vue3 基础 概述 Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。无论是简单还是复杂的界面&…...
【Linux】冯.诺依曼体系结构与操作系统
环境:centos7.6,腾讯云服务器Linux文章都放在了专栏:【Linux】欢迎支持订阅🌹冯.诺依曼体系结构什么是冯诺依曼体系结构?我们如今的计算机比如笔记本,或者是服务器,基本上都遵循冯诺依曼体系结构…...
WSO2 apim 多租户来区分api
WSO2 apim 多租户来区分api1. Tenant1.1 Add new tenant1.2 Add Role/User1.3 Published Api2. Delete Teant3. AwakeningWSO2安装使用的全过程详解: https://blog.csdn.net/weixin_43916074/article/details/127987099. Official Document: Managing Tenants. 1. Tenant 1.1 …...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
