【C++】红黑树插入操作实现以及验证红黑树是否正确
文章目录
- 前言
- 一、红黑树的插入操作
- 1.红黑树结点的定义
- 2.红黑树的插入
- 1.uncle存在且为红
- 2.uncle不存在
- 3.uncle存在且为黑
- 3.完整代码
- 二、是否为红黑树的验证
- 1.IsBlance函数
- 2.CheckColor函数
- 三、红黑树与AVL树的比较
前言
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的
红黑树的性质:
- 每个结点不是红色就是黑色
- 根节点是黑色的
- 如果一个节点是红色的,则它的两个孩子结点是黑色的
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 (每条路径上的黑色结点数量相同)
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
最短路径:全部都是黑节点的路径。
最长路径:一黑一红相间的路径
一、红黑树的插入操作
1.红黑树结点的定义
enum Color {RED,BLACK
};
template<class K,class V>
struct RBTreeNode {RBTreeNode* _left;RBTreeNode* _right;RBTreeNode* _parent;pair<K, V>_kv;Color _col;//颜色RBTreeNode(const pair<K,V>&kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED)//结点默认给成红色是为了方便后续的插入//因为默认为黑色的话还需要考虑所有路径上黑色结点数量是否相同//太麻烦了{}
};
2.红黑树的插入
插入分为一下三种情况,因为我们插入的结点默认为红色,而红黑树定义中指出不能出现连续的两个红色结点,为了维持红黑树,我们需要对一些结点的颜色进行改变有时还需要旋转改变树的形状,至于有关旋转的函数Rotate,我已经在之前AVL树的模拟实现中详细说明了,这里就不多在赘述了【C++】AVL树的插入操作实现以及验证是否正确(带平衡因子),有需要的可以去看一下。
1.uncle存在且为红
这种情况就不需要考虑旋转了
2.uncle不存在
3.uncle存在且为黑
总结:
红黑树插入关键看uncle
1.uncle存在且为红,变色(uncle与parent变黑色,grandfather变红色),之后继续向上处理
2.uncle不存在或者uncle存在且为黑,旋转加变色,之后break
3.小规律:grandfather在这个过程中要不本来就为红色,要不就变成红色
3.完整代码
template<class K,class V>
class RBTree {typedef RBTreeNode<K,V> Node;
public:bool Insert(const pair<K, V>& kv) {if (_root == nullptr) {//根节点必须为黑色_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr;while (cur) {//寻找插入位置if (cur->_kv.first < kv.first) {parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first) {parent = cur;cur = cur->_left;}else {return false;}}cur = new Node(kv);cur->_col = RED;//插入对应位置,默认为红色if (parent->_kv.first < kv.first) {parent->_right = cur;}else {parent->_left = cur;}cur->_parent = parent;//让新插入结点指向父亲while (parent && parent->_col == RED) {Node* grandfather = parent->_parent;if (parent = grandfather->_left) {Node* uncle = grandfather->_right;if (uncle && uncle->_col == RED) {//uncle存在且为红parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//继续向上更新cur = grandfather;parent = cur->_parent;}else {//uncle不存在或者uncle为黑if (cur == parent->_left) {// g// p// cRotateR(grandfather);grandfather->_col = RED;parent->_col = BLACK;}else {// g// p// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else {// parent == grandfather->_rightNode* uncle = grandfather->_right;if (uncle && uncle->_col == RED) {//uncle存在且为红parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//继续向上更新cur = grandfather;parent = cur->_parent;}else {//uncle不存在或者uncle为黑if (cur == parent->_right) {// g// p// cRotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else {// g// p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;//根节点必须为黑色return true;}void RotateL(Node* parent) {//左旋Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft) {curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;if (ppnode == nullptr) {_root = cur;cur->_parent = nullptr;}else {if (ppnode->_left = parent) {ppnode->_left = cur;}else {ppnode->_right = cur;}cur->_parent = ppnode;}}void RotateR(Node* parent) {//右旋Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright) {curright->_parent = parent;}cur->_right = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (ppnode == nullptr) {_root = cur;cur->_parent = nullptr;}else {if (ppnode->_left == parent) {ppnode->_left = cur;}else {ppnode->_right = cur;}cur->_parent = ppnode;}}
};
二、是否为红黑树的验证
1.IsBlance函数
bool IsBalance() {return IsBalance(_root);}bool IsBalance(Node* root) {if (root == nullptr) {return true;}if (root->_col != BLACK) {return false;}//根节点一定为黑色int benchmark = 0;Node* cur = _root;while (cur) {//算出最左边黑色结点的数目,为了与//其他路径黑色结点的数目作比较if (cur->_col == BLACK) {benchmark++;}cur = cur->_left;}return CheckColor(root, 0, benchmark);}
2.CheckColor函数
bool CheckColor(Node* root, int blacknum, int benchmark) {if (root == nullptr) {//root为空说明已经数完了一条路径的黑色结点//与原先数的最左的黑色节点数进行比较if (blacknum != benchmark) {return false;}return true;}if (root->_col == BLACK) {blacknum++;//当前路径黑色结点树++}if (root->_col == RED && root->_parent && root->_parent->_col == RED) {cout << root->_kv.first << "出现连续红色节点" << endl;//判断是否出现连续的红色结点return false;}//递归式对左右子树分别检验return CheckColor(root->_left, blacknum, benchmark) && CheckColor(root->_right, blacknum, benchmark);}
三、红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追
求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多。
相关文章:

【C++】红黑树插入操作实现以及验证红黑树是否正确
文章目录 前言一、红黑树的插入操作1.红黑树结点的定义2.红黑树的插入1.uncle存在且为红2.uncle不存在3.uncle存在且为黑 3.完整代码 二、是否为红黑树的验证1.IsBlance函数2.CheckColor函数 三、红黑树与AVL树的比较 前言 红黑树,是一种二叉搜索树,但在…...

学信息系统项目管理师第4版系列07_项目管理知识体系
1. 项目管理原则 1.1. 勤勉、尊重和关心他人 1.1.1. 关键点 1.1.1.1. 关注组织内部和外部的职责 1.1.1.2. 坚持诚信、关心、可信、合规原则 1.1.1.3. 秉持整体观 1.1.2. 职责 1.1.2.1. 诚信 1.1.2.2. 关心 1.1.2.3. 可信 1.1.2.4. 合规 1.2. 营造协作的项目管理团队…...
Leetcode 2851. String Transformation
Leetcode 2851. String Transformation 0. 吐槽1. 算法思路 1. 整体思路2. 字符串匹配优化 2. 代码实现 题目链接:2851. String Transformation 0. 吐槽 这道题多少有点坑爹,题目本身挺有意思的,是一道数组题目,其实用数学方法…...

在PHP8中对数组进行计算-PHP8知识详解
在php8中,提供了丰富的计算函数,可以对数组进行计算操作。常见的计算函数如下几个:array_sum()函数、array_merge()函数、array_diff()函数、array_diff_assoc()函数、array_intersect()函数、array_intersect_assoc()函数。 1、array_sum()函…...
Android BottomSheetDialog最大展开高度问题
修改界面的时候遇到了这个问题,这个问题比较简单,网上解决方案也很多,这是 peekHeight 半展开高度,毕竟只是 dialog,全铺满就我们不必考虑 dialog 了 方法是在DialogFragment初始化dialog时处理 companion object {/*** 设置弹窗高度 默认展开无折叠情况 */ const val …...
记录Linux部署人脸修复GFPGAN项目Docker Python 使用
记录Linux 服务器使用人脸修复GFPGAN 项目 1:阿里云安装docker,用docker 是隔离环境,Python环境还真是麻烦… https://help.aliyun.com/zh/ecs/use-cases/deploy-and-use-docker-on-alibaba-cloud-linux-2-instances 2:关于docker 镜像,想找个好的镜像也是很难,百度吧,很多Li…...
如何编写可重入的函数?
编写可重入(reentrant)的函数是在多线程环境或并发编程中非常重要的任务。可重入函数是一种可以安全地被多个线程同时调用的函数,而不会导致数据竞争或不一致性的函数。在C语言中,编写可重入函数需要遵循一些特定的规则和技巧。本…...

使用纯C语言定义通用型数据结构的方法和示例
文章目录 前言以实现优先队列来描述实现思想基本类型的包装类型比较函数演示总结 前言 最近一段时间在复习数据结构和算法,用的C语言,不得不说,不学个高级语言再回头看C语言根本不知道C语言的强大和完美,不过相比之下也有许多不便…...

数据结构基础8:二叉树oj+层序遍历。
二叉树oj层序遍历 题目一:二叉树的销毁:方法一:前序遍历:方法二:后序遍历: 题目二:二叉树查找值为x的节点方法一:方法二:方法三: 题目三:层序遍历…...

Spring注解家族介绍:@RestController
前言: Spring Boot可以说是当前JAVA最为重要的一个框架,而Spring Boot的基石Spring中有着丰富的注解,因此我们会利用几篇文章来讲解我目前学到的各种注解,因此本类型文章的篇幅会比较短,主要着重于介绍各个注解。 目录…...

rocketmq
🍓代码仓库 https://gitee.com/xuhx615/rocket-mqdemo.git 🍓基本概念 ⭐生产者(Producer):消息发布者⭐主题(Topic):topic用于标识同一类业务类型的消息⭐消息队列(MessageQueue)…...

JAVA成员变量首字母小写,第二个字母大写报错问题(原因:Lombok与Spring冲突)
1、问题现象: JAVA类里定义成员变量使用首字母小写,第二个字母大写 Getter Setter public class BrandQueryObject extends QueryObject{private String pName; }结果页面报错,无法找到类型为 cn.wolfcode.ssm.query.BrandQueryObject 的对象…...

Python入门教程 |Python 错误和异常
Python3 错误和异常 作为 Python 初学者,在刚学习 Python 编程时,经常会看到一些报错信息,在前面我们没有提及,这章节我们会专门介绍。 Python 有两种错误很容易辨认:语法错误和异常。 Python assert(断…...
API商品接口对接使用:从理论到实践
随着电子商务的飞速发展,API商品接口已成为现代电子商务应用程序不可或缺的一部分。通过API商品接口,开发者可以轻松地从其他应用程序或服务中获取商品信息,实现快速、高效的电子商务功能。本文将探讨API商品接口的概念、对接使用的方法以及一…...

解决stable diffusion webui1.6 wd1.4 tagger加载失败的问题
由于webui源码的变化,需要修改两个地方的import 1.tagger/ui.py # 第十行 # from webui import wrap_gradio_gpu_call # 原代码 from modules.call_queue import wrap_gradio_gpu_call1.preload.py # 第4行开始 # from modules.shared import models_path # 原…...
Python学习-实现简单的http服务
基于Python实现一个简单的HttpServer,当用户在浏览器中输入IP地址:8000时,则会返回index.html页面内容,访问其它信息,则会返回错误信息(404) """ httpserver v1.0 1.获取来自浏览器的请求, 2.判断如果请求内容是 …...
#循循渐进学51单片机#变量进阶与点阵LED#not.6
1、掌握变量的作用域及存储类别。 局部变量 函数内部声明的变量,只在函数内部有效,在本函数以外是不能使用的,叫局部变量。 全局变量 在函数外部声明的变量就是全局变量,一个源程序可以包含一个或多个函数,全局变量…...

访问者模式
图片转载自 #include<iostream> using namespace std; #include<list> /*模板工厂单例化,所有的商品被注册进工厂中*/ /*访问者模式(行为型模式) 访问者,被访问者 visit accept 让访问变成一种操作,不同…...

epoll 的实现
epoll 这么好,为什么迟至 2.6 版本的 kernel 才支持(epoll manual: The epoll API was introduced in Linux kernel 2.5.44.)?2.4 版本的 kernel 不支持 epoll? 原因很简单,epoll 没什么神奇的。在早期没有太多的并发连接要处理&…...

怎么用excel管理固定资产
在当今的数字时代,我们已经习惯了使用各种电子工具来提高我们的生产力。其中,Excel无疑是一个强大的工具,它不仅可以帮助我们处理数据,还可以用来进行复杂的计算和分析。然而,你可能不知道的是,Excel也可以…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...