基于matlab实现的额 BP神经网络电力系统短期负荷预测未来(对比+误差)完整程序分享
基于matlab实现的额 BP神经网络电力系统短期负荷预测


完整程序:
clear;
clc;
%%输入矢量P(15*10)
P=[0.2452 0.1466 0.1314 0.2243 0.5523 0.6642 0.7105 0.6981 0.6821 0.6945 0.7549 0.8215 0.2415 0.3027 0;
0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325 0.2385 0.3125 0;
0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156 0.2216 0.2701 1;
0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895 0.2352 0.2506 0.5;
0.2115 0.1201 0.1312 0.2019 0.5332 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025 0.2542 0.3125 0;
0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092 0.8221 0.2601 0.3198 0;
0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217 0.2579 0.3099 0;
0.2342 0.1368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.7126 0.2301 0.2867 0.5;
0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.68980 120.6999 0.7323 0.7721 0.7956 0.2234 0.2799 1;
0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6553 0.6673 0.6798 0.7023 0.7521 0.7756 0.2314 0.2977 0]';
%目标矢量T(12*10)
T=[0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325;
0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156;
0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895;
0.2115 0.1201 0.1312 0.2019 0.5532 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025;
0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092 0.8221;
0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217;
0.2342 0.7368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.8126;
0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.6898 0.6999 0.7323 0.7721 0.7956;
0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6552 0.6673 0.6798 0.7023 0.7521 0.7756;
0.2123 0.1257 0.1343 0.2079 0.5579 0.5716 0.7059 0.7145 0.7205 0.7401 0.8019 0.8136]';
%创建一个新的BP前向神经网络
%newff—生成一个新的BP前向神经网络
net=newff(minmax(P),[10,12],{'tansig','logsig'},'trainbr');
%设置训练参数
net.trainParam.show=10; %每10代显示一次
net.trainParam.lr=0.05; %学习速率(0.01-0.8)
net.trainParam.mc=0.9; %动量因子
net.trainParam.epochs=1000; %训练的代数
net.trainParam.goal=0.0001; %目标误差
%训练BP前向神经网络
%P为输入向量,T为目标向量
[net,tr]=train(net,P,T);
%仿真
%T1:31日实际负荷;P1:30日负荷+31日气象特征;A1:31日预测负荷
T1=[0.2119 0.1215 0.1621 0.2161 0.6171 0.6159 0.7115 0.7201 0.7243 0.7298 0.8179 0.8229]';
P1=[0.2123 0.1257 0.1343 0.2079 0.5579 0.5716 0.7059 0.7145 0.7205 0.7401 0.8019 0.8136 0.2317 0.2936 0]';
A1=sim(net,P1) ;
x=1:12;
figure,plot(x,T1,':r',x,A1,'b');
title('31日负荷预测与实际比较曲线,');
legend('实际负荷情况','预测负荷情况');
%计算仿真误差
E=T1-A1;
%计算误差平方和
SSE=sse(E);
figure,plot(x,E);
title('误差曲线');
相关文章:
基于matlab实现的额 BP神经网络电力系统短期负荷预测未来(对比+误差)完整程序分享
基于matlab实现的额 BP神经网络电力系统短期负荷预测 完整程序: clear; clc; %%输入矢量P(15*10) P[0.2452 0.1466 0.1314 0.2243 0.5523 0.6642 0.7105 0.6981 0.6821 0.6945 0.7549 0.8215 0.2415 0.3027 0; 0.2217 0.1581 0.1408 0.23…...
WPF的_Expander控件
WPF Expander 是 WPF(Windows Presentation Foundation)框架中的一个控件,用于实现可以展开和折叠内容的可折叠面板。 Expander 控件通常由一个展开/折叠的标题(Header)和一个显示/隐藏的内容部分(Content…...
【MT7628AN】IOT | MT7628AN OpenWRT开发与学习
IOT | MT7628AN OpenWRT开发与学习 时间:2023-06-21 文章目录 `IOT` | `MT7628AN` `OpenWRT`[开发与学习](https://blog.csdn.net/I_feige/article/details/132911634?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22132911634…...
基于Matlab实现自动泊车(垂直泊车)
自动泊车是一项非常有趣和实用的技术,它可以让车辆在没有人为干预的情况下自动停放在合适的位置上。在这篇文章中,我们将介绍如何使用Matlab实现自动泊车。 首先,我们需要了解自动泊车的基本原理。自动泊车系统通常包括车辆、传感器和控制算…...
笔试面试相关记录(4)
(1)实现防火墙的主流技术有哪些? 实施防火墙主要采用哪些技术 - 服务器 - 亿速云 (yisu.com) (2) char arr[][2] {a, b, c, d}; printf("%d", *(arr1)); 输出的是谁的地址?字符c 测试代码如下…...
unity UDP 通信
客户端 接收端 : using System; using System.IO; using System.Collections; using System.Collections.Generic; using System.Net; using System.Net.Sockets; using System.Text; using System.Threading; using UnityEngine; using UnityEngine.UI;public cla…...
一篇解决JavaScript
华子目录 JavaScript介绍JavaScript的组成JavaScript书写位置内部外部 js注释js输入(prompt)js输出js变量js基本数据类型number(数值类型)string(字符串)Boolean(布尔类型)undefined…...
Unity UGUI(一)基础组件
文章目录 1.Text:文本框2.Image:精灵图3.RawImage:生图4.Button:按钮5.InputField:输入框6.Tooggle:选择框7.Slider:滑动条8.Dropdown:下拉菜单9.Scrollbar:滚动条10.Scr…...
【微服务】六. Nacos配置管理
6.1 Nacos实现配置管理 配置更改热更新 在nacos左侧新建配置管理 Data ID:就是配置文件名称 一般命名规则:服务名称-环境名称.yaml 配置内容填写:需要热更新需求的配置 配置文件的id:[服务名称]-[profile].[后缀名] 分组&#…...
【华为云云耀云服务器L实例评测|云原生】自定制轻量化表单Docker快速部署云耀云服务器
🤵♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…...
无涯教程-JavaScript - ACOTH函数
描述 ACOTH函数返回数字的反双曲余切。 语法 ACOTH (number)争论 Argument描述Required/OptionalNumberThe absolute value of Number must be greater than 1. i.e., Number must be must be less than -1 or greater than 1.Required Notes 用于计算双曲反余切的方程为-…...
Qt QTreeWidge解决setItemWidget后,导致复选框失效
一、问题: QTreeWidget某一项加上itemWidget后,导致复选框失效问题 二、解决方法 将要加上的widget控件加到该项的后续的列,即控件跟复选框不同一列 三、具体代码 QTreeWidget* treeW new QTreeWidget; treeW->setColumnCount(2); /…...
strncpy
strncpy: 函数介绍: 函数原型: char *strncpy(char *dest, const char *src, int n) 返回值:dest字符串起始地址 说明: 1、当src字符串长度小于n时,则拷贝完字符串后,剩余部分将用空字节填…...
c++学习【23】matlab实现FOC算法
% 创建Figure窗口和滑块 figure;Id_slider uicontrol(Style, slider, Position, [100 50 120 20], ...Min, -5, Max, 5, Value, 1.5, Callback, updateVoltage); Id_text uicontrol(Style, text, Position, [100 80 120 20], String, d轴电流: 1.5);Iq_slider uicontrol(Sty…...
2020-2023中国高等级自动驾驶产业发展趋势研究-概念界定
1.1 概念界定 自动驾驶发展过程中,中国出现了诸多专注于研发L3级以上自动驾驶的公司,其在业界地位也越来越重要。本报告围绕“高等级自动驾驶” 展开,并聚焦于该技术2020-2023年在中国市场的变化趋势进行研究。 1.1.1 什么是自动驾驶 自动驾驶…...
ICPC 2022 网络赛 h (模拟
#include<bits/stdc.h> using namespace std; using VI vector<int>; using ll long long; const int mod 20220911;//枚举数位,枚举这一位余数是几 //每一位的限制, //如果有repeat 就下一个 int change(string x){int res 0 ;for(int …...
如何保护您的工业网络?
工业网络通过连接机器、设备和系统,在实现工业流程的高效生产、监控和管理方面发挥着关键作用。保护工业网络,确保其关键资产和流程的完整性、可用性和机密性,是工业组织的首要任务。在本文中,我们将探讨保护工业网络安全面临的障…...
Python之设计模式
一、设计模式_工厂模式实现 设计模式是面向对象语言特有的内容,是我们在面临某一类问题时候固定的做法,设计模式有很多种,比较流行的是:GOF(Goup Of Four)23种设计模式。当然,我们没有必要全部学…...
redis 多租户隔离 ACL 权限控制(redis-cli / nodejs的ioredis )
Redis 6版本之后:提供ACL的功能对用户进行更细粒度的权限控制 :(1)接入权限:用户名和密码(2)可以执行的命令(3)可以操作的 KEY ACL常用规则介绍: 指令列表 //增加可操…...
【算法专题突破】滑动窗口 - 找到字符串中所有字母异位词(14)
目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后: 1. 题目解析 题目链接:438. 找到字符串中所有字母异位词 - 力扣(Leetcode) 这道题很好理解,就是找出从不同位置开始的所有异位词。 2. 算法原理 那我们该如…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001
qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类,直接把源文件拖进VS的项目里,然后VS卡住十秒,然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分,导致编译的时候找不到了。因…...
算法250609 高精度
加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...
