基于elasticsearch-8.8.2 kibana-8.8.2 搭建一个文搜图系统demo
数据来源是由 图片url,图片descript,图片keywords 外加一个id
基于此首先创建 索引,
keywords是一组由单词或词组 组成的一组数据,所以以数组形式压入数据:
descript 是由两条语句组合成的数据(针对图片的两种不同描述)
# 这里创建的keywords 数组元素类型为text,即可以模糊匹配
PUT /img-search/
{"mappings":{"properties":{"id":{"type": "long"},"keywords":{"type":"text"},"descript":{"type":"text"},"url":{"type":"keyword"}}}
}
#这里创建的keywords 数组元素为keyword ,只能是精确匹配数组中的元素
PUT /pic-search/
{"mappings":{"properties":{"id":{"type": "long"},"keywords":{"type":"keyword"},"descript":{"type":"text"},"url":{"type":"keyword"}}}
}
然后倒入提前准备好的数据:
curl -X POST "http://121.36.xxx.xx:xxxx/img-search/_bulk" -H "Content-Type: application/json" --data-binary "@data.json"
data.json 文件的内容如下:
# 格式需要严格按照如下形式
{"index":{"_index":"img-search","_id":"002"}}
{"id":1,"keywords":["fly","wing","bird","crane","egret","stretch","flight","large","spread","white","heron","beak","sky","cloudy"],"descript":"'white bird in flight over a grey background', 'white bird in flight on a white background'","url":"baidu.com"}
清空img-search 索引下的数据:
#kibana 界面操作
POST /img-search/_delete_by_query
{"query":{"match_all":{}}
}
在Elasticsearch中,处理某个字段有多个值的情况可以采用不同的方法,具体取决于你的查询需求以及数据的性质。以下是两种主要的方法
1.数组字段:将该字段创建为一个数组(或者Elasticsearch中的nested字段,更复杂的数据结构)。这种方法适用于字段的多个值之间具有关联性,你希望能够对这些值进行聚合、过滤和查询。例如,如果你有一个文档表示一本书,可以将作者字段设计为数组,以便容纳多位作者。
优点:
可以使用Elasticsearch的聚合功能对多个值进行分析。
可以更容易地进行复杂的查询,例如搜索包含指定作者的所有书籍。
缺点:
使用数组会增加索引的复杂性和存储开销
2.多个字段串连接:将多个值连接成一个长字符串,并将其作为单个字段存储。这种方法适用于字段的多个值之间没有关联性,或者你只关心字段的文本表示形式。你可以使用分隔符将多个值连接在一起。
优点:
索引和存储开销较低。
可以简化索引映射和查询。
缺点:
不适用于需要对多个值进行聚合或复杂查询的情况。
所以考虑到后期可能会对图片提取词进行聚合分类查询
这里选择数组类型存储keywords
#从指定API拉取图片
func mainDownload() {for _, p := range [...]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} {url := "http://www.xxx.com/getPhotoByKeywords?keyword=人物&cate=3&page=" + strconv.Itoa(p) // 替换为你要请求的 URL// 发起 GET 请求response, err := http.Get(url)if err != nil {fmt.Println("请求失败:", err)return}defer response.Body.Close()// 读取响应数据body, err := ioutil.ReadAll(response.Body)if err != nil {fmt.Println("读取响应数据失败:", err)return}type image struct {Id int `json:"id"`Title string `json:"title"`KeywordTags string `json:"keywordTags"`Url string `json:"url"`Cate int `json:"cate"`}type respStruct struct {Code int `json:"code"`Msg string `json:"msg"`Data []image `json:"data"`}// 打印响应数据fmt.Println("响应数据:")var r respStructerr = json.Unmarshal([]byte(body), &r)if err != nil {fmt.Println("json.Unmarshal", err)}//fmt.Println(r)//trans := &http.Transport{}for _, v := range r.Data {fmt.Println(v.Url, len(v.Url))re, err := http.NewRequest("GET", "https:"+v.Url, nil)if err != nil {fmt.Println("http.NewRequest err:", err)}fmt.Println("http.NewRequest url:", v.Url)re.Header.Set("Referer", "https://www.51mo.com")client := http.Client{}resp, err := client.Do(re)if err != nil {fmt.Println("client.Do image:", err)}defer resp.Body.Close()sindex := strings.Index(v.Url, ".com")eindex := strings.Index(v.Url, "?")fmt.Println("sindex_eindex:", sindex, eindex)fmt.Println(v.Url[sindex+5 : eindex])fileName := strings.Replace(v.Url[sindex+5:eindex], "/", "+", -1)// 创建图片文件file, err := os.Create("./pic/" + fileName)if err != nil {fmt.Println("os.Create err:", err)}defer file.Close()_, err = io.Copy(file, resp.Body)if err != nil {fmt.Println("io.Copy err:", err)}}}
}#将模型转化来的数据从excel 中读取出来写入data.json 文件作为写入es 的数据
func mainFormatData() {// 打开Excel文件xlFile, err := xlsx.OpenFile("shang.xlsx")if err != nil {log.Fatal(err)}// 遍历工作表for _, sheet := range xlFile.Sheets {fmt.Printf("工作表名称: %s\n", sheet.Name)// 遍历行for numIndex, row := range sheet.Rows {// 遍历单元格var key, keyval, descval, nameval stringfor columnIndex, cell := range row.Cells {if columnIndex == 0 {continue}text := cell.String()switch columnIndex {case 1:key = "keywords"//keyval = strings.Replace(text, `"`, `'`, -1)re := regexp.MustCompile(`([a-zA-Z])"([a-zA-Z])`)keyval = re.ReplaceAllString(text, "$1'$2")case 2:key = "descript"//descval = strings.Replace(text, `"`, `'`, -1)#下面这里将左右两边都是字母的双引号换为单引号re := regexp.MustCompile(`([a-zA-Z])"([a-zA-Z])`)descval = re.ReplaceAllString(text, "$1'$2")case 3:key = "name"nameval = text}fmt.Printf("第 %d 个 %s :%s\t", numIndex, key, text)}_num := numIndex + 801_i := map[string]any{"index": map[string]string{"_index": "img-search","_id": strconv.Itoa(_num),},}fmt.Println("descval", descval)_v := map[string]any{"id": _num,"keywords": keyval,"descript": descval,"name": nameval,}_jsonI, err := json.Marshal(_i)if err != nil {log.Fatal("json.Marshal I err:", err)}_jsonV, err := json.Marshal(_v)if err != nil {log.Fatal("json.Marshal V err:", err)}file, err := os.OpenFile("data.json", os.O_WRONLY|os.O_APPEND, 0666)if err != nil {log.Fatal("os.OpenFile err:", err)}defer file.Close()write := bufio.NewWriter(file)_g := strings.Replace(string(_jsonV), `\"`, `"`, -1)_y := strings.Replace(_g, `"[`, `[`, -1)_z := strings.Replace(_y, `]"`, `]`, -1)write.WriteString(string(_jsonI) + "\n")write.WriteString(_z + "\n")write.Flush()fmt.Println("\n")}}
}
最终data.json 中的数据如下:
{"index":{"_id":"1","_index":"img-search"}}
{"descript":["woman holding a yellow maple leaf on an orange background", "a smiling young woman with a yellow maple leaf"],"id":1,"keywords":["hold", "girl", "hand", "red", "autumn", "young", "leaf", "woman", "smile", "catch", "sweater", "face", "maple leaf", "autumn leave", "laugh", "yellow"],"name":"ai+upload+20230721+edit_cMSndoSirkfboFoQ.jpg"}
{"index":{"_id":"2","_index":"img-search"}}
{"descript":["group of people looking at the world around them", "group of people facing the earth, with some galaxy background"],"id":2,"keywords":["stand", "business suit", "earth", "world", "businessman", "man", "people", "person", "purple"],"name":"ai+upload+20230726+edit_0W7yMVLHVtVTLfcf.jpg"}
通过API接口将data,json 中的数据写入es
curl -X POST "http://121.36.xxx.xx:9201/img-search/_bulk" -H "Content-Type: application/json" --data-binary "@data.json"
#查看es某条索引下有多少数据,以及最大的文档ID/如果数据量正好等于最大文档ID 则说明导入数据没有缺失
GET /img-search/_search
{"aggs": {"max_id": {"max": {"field": "id"}}},"size": 0
}
#清空某条索引下所有的数据
POST /img-search/_delete_by_query
{"query":{"match_all":{}}
}
相关文章:

基于elasticsearch-8.8.2 kibana-8.8.2 搭建一个文搜图系统demo
数据来源是由 图片url,图片descript,图片keywords 外加一个id 基于此首先创建 索引, keywords是一组由单词或词组 组成的一组数据,所以以数组形式压入数据: descript 是由两条语句组合成的数据(针对图片的两种不同描述) # 这里创建的keywords 数组元素类型为text,即可以模糊匹…...
第26节-PhotoShop基础课程-形状工具组-画板
文章目录 前言1.基础图形1.正方形(shift/alt/两者加起来)2.描边3.合并形状 将多个图放在一个图层4.对齐只能在不同图层5.修改6.重叠,相交 2.多边形1.边数2.星形 3.直线工具1.正常2.箭头 4.自定义形状 前言 类似画图板,矢量图形。…...

第一次课,通过进程信息和服务信息识别当前计算机运行程序(预习版)
题目: 检测的目标进程: ydebugg ; “ImmunityDebugger.exe” _500], rax Exe ; “ollydbg.exe” _4F8], rax hackerE ; “ProcessHacker.exe” _4F0], rax Exe ; “tcpview.exe” _4E8], rax sExe ; “autoruns.exe” _4E0], rax scExe ; “autorunsc.ex…...

ChatGPT 或其它 AI,能用在文书创作上吗?
新的申请季已经正式开始,一些热门项目的ED截止日期也不再遥远,因此很多准留学生们都已经开始了关于文书的创作。 而随着科技的不断发展,以ChatGPT为首的一众AI工具也作为一种辅助手段愈发融入了我们的生活。 那么不免就会有一些同学在准备申…...
Java中锁的分类
Java中锁的分类 这篇文章介绍各种锁的分类。介绍的内容如下: 公平锁/非公平锁可重入锁独享锁/共享锁互斥锁/读写锁乐观锁/悲观锁分段锁偏向锁/轻量级锁/重量级锁自旋锁 上面是很多锁的名词,这些分类并不是全是指锁的状态,有的指锁的特性&am…...

centos安装flink,通过windows访问webui
1. 安装flink 1.1. flink的下载 通过flink官网下载flink安装包 https://flink.apache.org/ 下载安装包 1.2 flink在centos上的安装 将下载好的flink-1.17.1-bin-scala_2.12.tgz安装包放到centos目录下 解压文件: [rootlocalhost ~]# tar -zxvf flink-1.17.…...

如何让两台手机相互远程控制?
你的两台手机是什么系统的?如果你的两台手机都是安卓系统,而且都是安卓7.0及以上版本的系统,那么恭喜你,这两台手机可以相互远程控制! 你可以利用两个软件实现将两台手机相互远程控制的想法。为了避免混淆,…...

预编译为什么能防止SQL注入?一看你就明白了。预编译原理详解
「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 预编译防止SQL注入 1、SQL执行过程2、预编译原理3、…...

【7z密码】7z压缩包密码忘记了,怎么办?i
7z压缩包设置了密码,解压的时候就需要输入正确对密码才能顺利解压出文件,正常当我们解压文件或者删除密码的时候,虽然方法多,但是都需要输入正确的密码才能完成。忘记密码就无法进行操作。 那么,忘记了7z压缩包的密码…...

部署云MYSQL(在线版)
在Methodot - 您的一站式云原生在线开发协作平台网站上可以部署免费的MYSQL,在应用商店里能看到可以搭建多种数据库:(前提是要注册登录,免费版只能是2人共享) 登陆好后,点击工作台,选择应用商店…...

Gin 框架 解决 跨域问题
Gin 框架解决跨域问题 一点废话 在学习 Axios 的时候发现 up 使用了一个网址来提供 json 数据。因为不想加什么公众号搞啥百度网盘的,然后又刚好会一点点 go,就想着自己用 gin 框架返回一个 json 到前端页面然后从这个页面获取 json 。 这是我的go代码…...
【Datawhale课程笔记-简单学点大模型】大模型的能力
大模型的能力 参考GITHUB:https://github.com/datawhalechina/so-large-lm/blob/main/第二章:大模型的能力.md 深入探讨GPT-3——这个具有代表性的大型语言模型的能力。我们的研究主要基于GPT-3论文中的基准测试,这些测试包括: …...

git使用说明
目录 前言1.安装1.1. windows1.1.1.git客户端1.1.2.配置git客户端1.1.3.安装TortoiseGit图形客户端1.1.4 关于文件换行问题 1.2.ubuntu1.2.1.ubuntu终端Git中文乱码1.2.2 git log中文乱码解决 2.建立版本库2.1.下载网上开源版本库2.1.1.复制下载地址2.1.2.使用命令行…...

【PowerQuery】PowerBI Pro账户的自动刷新
在数据和模型通过发布或者上传方式上传到PowerBI Pro中,如何来进行数据刷新呢?数据源依然在本地,而数据模型已经发布到PowerBI Pro云端服务中。如果数据源更新,我们的模型如何进行自动刷新呢? PowerBI Pro如果需要基于本地数据源更新进行模型更新需要部署相应的数据网关服…...

红黑树(思维导图详解版)
目录 资源已上传 实现代码 测试代码 资源已上传 部分图片 实现代码 注意判断是否为红黑树的代码实现,实现代码中红黑树的删除 #pragma once #include<iostream> using namespace std;enum Color_Type {Red,Black };template<class K,class V> str…...

javafx学习记录
1.布局 2.选择重写或实现方法(select methods to override/implements) ctrl o 3.javafx有init方法,start方法,stop方法 4.定义一个按钮,使用系统默认浏览器访问网站 5.使窗口的关闭栏,缩小扩屏栏,代码是倒数第二行 6.设置模态窗口,默认关闭模态的 下…...

友善Nona Pi开发板ubuntu22.04系统用Python3.8.17的pip安装PyQt5.15.2时报错“Q_PID”这个宏未定义的一种解决办法
安装命令: pip install PyQt55.15.2 --config-settings --confirm-license --verbose -i https://mirrors.aliyun.com/pypi/simple/ 遇到出错: 如图: 分析具体错误内容: These bindings will be built: Qt, QtCore, QtNetwo…...

HTML中name和class,id的区别和联系
在HTML中,name、class和id是用于标识和选择元素的属性。 区别: name属性:用于标识表单元素,特别是在提交表单时,用于识别表单数据。name属性可以在同一表单中的多个元素中重复使用。class属性:用于为一个…...
Google 开源库Guava详解(集合工具类)—Maps、Multisets、Multimaps
一、Maps Maps有许多很酷的实用程序,值得单独解释。 1、uniqueIndex Maps.uniqueIndex(Iterable,Function)解决了一个常见的情况,即有一堆对象,每个对象都有一些唯一的属性,并希望能够根据该…...

肖sir__mysql之介绍__001
mysql之介绍 一、认识数据库 (1)什么是数据库? 是存放数据的电子仓库。以某种方式存储百万条,上亿条数据,供多个用户访问共享。 如: (2)数据库分关系型数据库和非关系型数据库 a、…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...