当前位置: 首页 > news >正文

目标检测网络之Fast-RCNN

文章目录

  • Fast RCNN解决的问题
  • Fast RCNN网络结构
    • RoI pooling layer
    • 合并损失函数及其传播
      • 统一的损失函数
      • 损失函数的反向传播过程
  • Fast RCNN的训练方法
    • 样本选择方法
    • SGD参数设置
    • 多尺度图像训练
    • SVD压缩全连接层
  • 对比实验
    • 对比实验使用到的网络结构
    • VOC2010和VOC2012数据集结果
    • VOC2007数据集结果
    • 训练和推理时间比对
    • 哪些层需要进行微调fine-tuning
  • 设计评估
    • 多任务训练的情况
    • 多尺度训练的作用<

相关文章:

目标检测网络之Fast-RCNN

文章目录 Fast RCNN解决的问题Fast RCNN网络结构RoI pooling layer合并损失函数及其传播统一的损失函数损失函数的反向传播过程Fast RCNN的训练方法样本选择方法SGD参数设置多尺度图像训练SVD压缩全连接层对比实验对比实验使用到的网络结构VOC2010和VOC2012数据集结果VOC2007数…...

Golang Gorm 创建HOOK

创建的时候&#xff0c;在插入数据之前&#xff0c;想要做一些事情。钩子函数比较简单&#xff0c;就是实现before create的一个方法。 package mainimport ("gorm.io/driver/mysql""gorm.io/gorm" )type Student struct {ID int64Name string gorm:&q…...

计算机视觉的应用15-图片旋转验证码的角度计算模型的应用,解决旋转图片矫正问题

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用15-图片旋转验证码的角度计算模型的应用&#xff0c;解决旋转图片矫正问题&#xff0c;在CV领域&#xff0c;图片旋转验证码的角度计算模型被广泛应用于解决旋转图片矫正问题&#xff0c;有效解决机…...

【Seata】分布式事务问题和理论基础

目录 1.分布式事务问题 1.1本地事务 1.2分布式事务 2.理论基础 2.1CAP定理 2.1.1一致性 2.1.2可用性 2.1.3分区容错 2.1.4矛盾 2.2BASE理论 2.3解决分布式事务的思路 1.分布式事务问题 1.1本地事务 本地事务&#xff0c;也就是传统的单机事务。在传统数据库事务中…...

文件打包解包的方法

在很多情况下&#xff0c;软件需要隐藏一些图片&#xff0c;防止用户对其更改&#xff0c;替换。例如腾讯QQ里面的资源图片&#xff0c;哪怕你用Everything去搜索也搜索不到&#xff0c;那是因为腾讯QQ对这些资源图片进行了打包&#xff0c;当软件运行的时候解包获取资源图片。…...

npm 清缓存(重新安装node-modules)

安装node依赖包的会出现失败的情况&#xff0c;如下图所示&#xff1a; 此时 提示有些依赖树有冲突&#xff0c;根据提示 “ this command with --force or --legacy-peer-deps” 执行命令即可。 具体步骤如下&#xff1a; 1、先删除本地node-modules包 2、删掉page-loacl…...

sqlserver查询表中所有字段信息

精简 SELECT 字段名 a.name,主键 case when exists(SELECT 1 FROM sysobjects where xtypePK and parent_obja.id and name in (SELECT name FROM sysindexes WHERE indid in( SELECT indid FROM sysindexkeys WHERE id a.id AND colida.colid))) then √ else …...

二叉树的概念、存储及遍历

一、二叉树的概念 1、二叉树的定义 二叉树&#xff08; binary tree&#xff09;是 n 个结点的有限集合&#xff0c;该集合或为空集&#xff08;空二叉树&#xff09;&#xff0c;或由一个根结点与两棵互不相交的&#xff0c;称为根结点的左子树、右子树的二叉树构成。 二叉树的…...

【面试题】智力题

文章目录 腾讯1000瓶毒药里面只有1瓶是有毒的&#xff0c;问需要多少只老鼠才能在24小时后试出那瓶有毒。有两根不规则的绳子&#xff0c;两根绳子从头烧到尾均需要一个小时&#xff0c;现在有一个45分钟的比赛&#xff0c;裁判员忘记带计时器&#xff0c;你能否通过烧绳子的方…...

【SpringBoot集成Redis + Session持久化存储到Redis】

目录 SpringBoot集成Redis 1.添加 redis 依赖 2.配置 redis 3.手动操作 redis Session持久化存储到Redis 1.添加依赖 2.修改redis配置 3.存储和读取String类型的代码 4.存储和读取对象类型的代码 5.序列化细节 SpringBoot集成Redis 1.添加 redis 依赖 …...

day49:QT day2,信号与槽、对话框

一、完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&#xff0c;给定两个…...

Meta分析核心技术

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…...

Gof23设计模式之责任链模式

1.概述 责任链模式又名职责链模式&#xff0c;为了避免请求发送者与多个请求处理者耦合在一起&#xff0c;将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链&#xff1b;当有请求发生时&#xff0c;可将请求沿着这条链传递&#xff0c;直到有对象处理它为止…...

数字孪生和元宇宙:打造未来的数字边界

数字孪生和元宇宙是近两年来被热议的两个概念&#xff0c;但由于技术的交叉两者也极易被混淆。本文希望带大家深入探讨一下这两者之间的关系&#xff0c;以及它们如何一起构建了数字时代的新格局。 1. 数字孪生的本质 数字孪生是一种虚拟模型&#xff0c;它通过数字手段对现实…...

【新版】系统架构设计师 - 软件架构设计<新版>

个人总结&#xff0c;仅供参考&#xff0c;欢迎加好友一起讨论 文章目录 架构 - 软件架构设计&#xff1c;新版&#xff1e;考点摘要概念架构的 4 1 视图架构描述语言ADL基于架构的软件开发方法ABSDABSD的开发模型ABSDMABSD&#xff08;ABSDM模型&#xff09;的开发过程 软件架…...

Linux面试题

当准备 Linux 面试时&#xff0c;以下是一些可能会遇到的常见 Linux 面试题&#xff1a; 1. 什么是Linux&#xff1f;解释一下Linux操作系统的特点。 2. 什么是Linux内核&#xff1f;Linux内核的作用是什么&#xff1f; 3. 如何在Linux系统上查看当前的IP地址和子网掩码&#…...

NODEJS版本管理工具

一、使用NVM 下载 Linux下载 curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh widows下载地址 https://github.com/coreybutler/nvm-windows/releases 安装Node.js版本&#xff1a; nvm install 14.16.0 切换Node.js版本&#xff1a; nvm use …...

【个人笔记本】本地化部署 类chatgpt模型 详细流程

不推荐小白&#xff0c;环境配置比较复杂 全部流程 下载原始模型&#xff1a;Chinese-LLaMA-Alpaca-2linux部署llamacpp环境使用llamacpp将Chinese-LLaMA-Alpaca-2模型转换为gguf模型windows部署Text generation web UI 环境使用Text generation web UI 加载模型并进行对话 准…...

RFID与人工智能怎么融合,RFID与人工智能融合的应用

随着物联网技术的不断发展&#xff0c;现实世界与数字世界的桥梁已经被打通。物联网通过各种传感器&#xff0c;将现实世界中的光、电、热等信号转化为有价值的数据。这些数据可以通过RFID技术进行自动收集和传输&#xff0c;然后经由人工智能算法进行分析、建模和预测&#xf…...

性能测试 —— Jmeter 常用三种定时器

1、同步定时器 位置&#xff1a;HTTP请求->定时器->Synchronizing Timer 当需要进行大量用户的并发测试时&#xff0c;为了让用户能真正的同时执行&#xff0c;添加同步定时器&#xff0c;用户阻塞线程&#xff0c;知道线程数达到预先配置的数值&#xff0c;才开始执行…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...