雪花算法snowflake
snowflake中文的意思是 雪花,雪片,所以翻译成雪花算法。它最早是twitter内部使用的分布式环境下的唯一ID生成算法。在2014年开源。
雪花算法产生的背景当然是twitter高并发环境下对唯一ID生成的需求,得益于twitter内部高超的技术,雪花算法流传至今并被广泛使用。它至少有如下几个特点:
能满足高并发分布式系统环境下ID不重复
基于时间戳,可以保证基本有序递增(有些业务场景对这个又要求)
不依赖第三方的库或者中间件
生成效率极高
雪花算法原理

10位的数据机器位,所以可以部署在1024个节点。
12位的序列,在毫秒的时间戳内计数。支持每个节点每毫秒产生4096个ID序号,所以最大可以支持单节点大概四百万的并发量,这个妥妥的够用了。
雪花算法java实现
public class SnowflakeIdWorker {/** 开始时间截 (这个用自己业务系统上线的时间) */private final long twepoch = 1575365018000L;/** 机器id所占的位数 */private final long workerIdBits = 10L;/** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */private final long maxWorkerId = -1L ^ (-1L << workerIdBits);/** 序列在id中占的位数 */private final long sequenceBits = 12L;/** 机器ID向左移12位 */private final long workerIdShift = sequenceBits;/** 时间截向左移22位(10+12) */private final long timestampLeftShift = sequenceBits + workerIdBits;/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */private final long sequenceMask = -1L ^ (-1L << sequenceBits);/** 工作机器ID(0~1024) */private long workerId;/** 毫秒内序列(0~4095) */private long sequence = 0L;/** 上次生成ID的时间截 */private long lastTimestamp = -1L;//==============================Constructors=====================================/*** 构造函数* @param workerId 工作ID (0~1024)*/public SnowflakeIdWorker(long workerId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("workerId can't be greater than %d or less than 0", maxWorkerId));}this.workerId = workerId;}// ==============================Methods==========================================/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/public synchronized long nextId() {long timestamp = timeGen();//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}//如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;//毫秒内序列溢出if (sequence == 0) {//阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}//时间戳改变,毫秒内序列重置else {sequence = 0L;}//上次生成ID的时间截lastTimestamp = timestamp;//移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) //| (workerId << workerIdShift) //| sequence;}/*** 阻塞到下一个毫秒,直到获得新的时间戳* @param lastTimestamp 上次生成ID的时间截* @return 当前时间戳*/protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}/*** 返回以毫秒为单位的当前时间* @return 当前时间(毫秒)*/protected long timeGen() {return System.currentTimeMillis();}
}
上面第一部分说到雪花算法的性能比较高,接下来我们测试下性能:
public static void main(String[] args) {SnowflakeIdWorker idWorker = new SnowflakeIdWorker(1);long start = System.currentTimeMillis();int count = 0;for (int i = 0; System.currentTimeMillis()-start<1000; i++,count=i) {idWorker.nextId();}long end = System.currentTimeMillis()-start;System.out.println(end);System.out.println(count);}
其可以产生400w+的id,效率还是相当高的。
调整比特位分布
很多公司会根据 snowflake 算法,根据自己的业务做二次改造。举个例子。你们公司的业务评估不需要运行69年,可能10年就够了。但是集群的节点可能会超过1024个,这种情况下,你就可以把时间戳调整成39bit,然后workerid调整为12比特。同时,workerid也可以拆分下,比如根据业务拆分或者根据机房拆分等。类似如下:

源码
twitter的雪花算法:https://github.com/twitter-archive/snowflake
相关文章:

雪花算法snowflake
snowflake中文的意思是 雪花,雪片,所以翻译成雪花算法。它最早是twitter内部使用的分布式环境下的唯一ID生成算法。在2014年开源。雪花算法产生的背景当然是twitter高并发环境下对唯一ID生成的需求,得益于twitter内部高超的技术,雪…...

Part 4 描述性统计分析(占比 10%)——上
文章目录【后续会持续更新CDA Level I&II备考相关内容,敬请期待】【考试大纲】【考试内容】【备考资料】1、统计基本概念1.1、统计学的含义及应用1.1.1、统计学的含义1.2.1、统计学的应用1.2、统计学的基本概念1.2.1、数据及数据的分类1.2.2、总体和样本1.2.3、…...

Linux系统安全:安全技术和防火墙
目录 一、安全技术 1、安全技术 2、防火墙分类 二、防火墙 1、iptables五表五链 2、黑白名单 3、iptables基本语法 4、iptables选项 5、控制类型 6、隐藏扩展模块 7、显示扩展模块 8、iptables规则保存 9、自定义链使用 一、安全技术 1、安全技术 ①入侵检测系统…...
【干货】Python:turtle库的用法
【干货】Python:turtle库的用法1. turtle库概述2. turtle库与基本绘图2.1 导入库的三种方式2.1.12.1.22.1.32.2 窗体函数2.2 画笔状态函数2.2.1 seed(s)2.2.2 random()2.2.3 randint(a, b)2.2.4 getrandbits(k)2.2.5 randrange(start, stop[ , step])2.2.6 uniform(…...
信息安全与网络安全有什么区别?
生活中我们经常会听到要保障自己的或者企业的信息安全。那到底什么是信息安全呢?信息安全包含哪些内容?与网络安全又有什么区别呢?今天我们就一起来详细了解一下。什么叫做信息安全?信息安全定义如下:为数据处理系统建…...

花了5年时间,用过市面上95%的工具,终于找到这款万能报表工具
经常有粉丝问我有“哪个报表工具好用易上手?”或者是“有哪些适合绝大多数普通职场人的万能报表工具?” 从这里我大概总结出了大家选择报表工具最期望满足的3点: (1)简单易上手:也就是所谓的学习门槛要低…...

ESP32S3系列--SPI主机驱动详解(一)
一、目的SPI是一种串行同步接口,可用于与外围设备进行通信。ESP32S3自带4个SPI控制器外设,其中SPI0/SPI1内部专用,共用一组信号线,通过一个仲裁器访问外部Flash和PSRAM;SPI2/3各自使用一组信号线;开发者可以使用SPI2/3控制外部SPI…...

2023开工开学火热!远行的人们,把淘特箱包送上顶流
春暖花开,被疫情偷走的三年在今年开学季找补回来了。多个数据反馈,居民消费意愿大幅提升。在淘特上,开工开学节点就很是明显:1月30日以来,淘特箱包品类甚至远超2022年双11,成为开年“第一爆品”。与此同时&…...

Intel x86_64 PMU简介
文章目录前言一、性能监控概述二、CPUID information三、架构性能监控3.1 架构性能监控 Version 13.1.1 架构性能监控 Version 1 Facilities3.1.2 预定义的体系结构性能事件3.1.3 cmask demo测试参考资料前言 Intel 64 和 IA-32 架构提供了 PMU(Performance Monito…...

Vue (2)
文章目录1. 模板语法1.1 插值语法1.2 指令语法2. 数据绑定3. 穿插 el 和 data 的两种写法4. MVVM 模型1. 模板语法 root 容器中的代码称为 vue 模板 1.1 插值语法 1.2 指令语法 图一 : 简写 : v-bind: 是可以简写成 : 的 总结 : …...
ESP8266 + STC15基于AT指令通过TCP通讯协议获取时间
ESP8266 + STC15基于AT指令通过TCP通讯协议获取时间 如果纯粹拿32位的ESP8266模块给8位的单片机仅供授时工具使用,有点大材小用了。这里不讨论这个拿esp8266来单独开发使用。本案例只是通过学习esp8266 AT指令功能来验证方案的可行性。 🔖STC15 单片机采用的是:STC15F2K60S…...

谈谈Spring中Bean的生命周期?(让你瞬间通透~)
目录 1.Bean的生命周期 1.1、概括 1.2、图解 2、代码示例 2.1、初始化代码 2.2、初始化的前置方法和后置方法(重写) 2.3、Spring启动类 2.4、执行结果 2.5、经典面试问题 3.总结 1.Bean的生命周期 1.1、概括 Spring中Bean的生命周期就是Bean在…...

如何将VirtualBox虚拟机转换到VMware中
转换前的准备 首先需要你找到你的virtualbox以及VM安装到哪个文件夹里了,需要将这两个文件夹添加进环境变量Path中。 如果你记不清了,可以用everything全局搜索一下“VBoxManage.exe’以及“vmware-vdiskmanager.exe”,看一眼这个程序放到哪…...
洞庭龙梦(开发技巧和结构理论集)
1、经验来源,单一获取方式。进行形态等级展示。唯一游戏系统经验来源。无主线和支线剧情。2、玩家使用流通货币(充值货币),到玩家空间商城充值游戏,两人以上玩家进行游戏,掉落道具。交易系统游戏玩法&#…...

【23种设计模式】创建型模式详细介绍
前言 本文为 【23种设计模式】创建型模式详细介绍 相关内容介绍,下边具体将对单例模式,工厂方法模式,抽象工厂模式,建造者模式,原型模式,具体包括它们的特点与实现等进行详尽介绍~ 📌博主主页&…...
@Bean的处理流程,源码分析@Bean背后发生的事
文章目录写在前面关键类ConfigurationClassPostProcessor1、ConfigurationClassPostProcessor的注册2、ConfigurationClassPostProcessor的处理过程(1)parse方法中,Bean方法的处理(2)注册解析Bean标注的方法写在前面 …...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...