当前位置: 首页 > news >正文

PyG-GAT-Cora(在Cora数据集上应用GAT做节点分类)

文章目录

  • model.py
  • main.py
  • 参数设置
  • 运行图

model.py

import torch.nn as nn
from torch_geometric.nn import GATConv
import torch.nn.functional as F
class gat_cls(nn.Module):def __init__(self,in_dim,hid_dim,out_dim,dropout_size=0.5):super(gat_cls,self).__init__()self.conv1 = GATConv(in_dim,hid_dim)self.conv2 = GATConv(hid_dim,hid_dim)self.fc = nn.Linear(hid_dim,out_dim)self.relu  = nn.ReLU()self.dropout_size = dropout_sizedef forward(self,x,edge_index):x = self.conv1(x,edge_index)x = F.dropout(x,p=self.dropout_size,training=self.training)x = self.relu(x)x = self.conv2(x,edge_index)x = self.relu(x)x = self.fc(x)return x

main.py

import torch
import torch.nn as nn
from torch_geometric.datasets import Planetoid
from model import gat_cls
import torch.optim as optim
dataset = Planetoid(root='./data/Cora', name='Cora')
print(dataset[0])
cora_data = dataset[0]epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7net = gat_cls(cora_data.x.shape[1],hidden_dim,output_dim)
optimizer = optim.AdamW(net.parameters(),lr=lr,weight_decay=weight_decay)
#optimizer = optim.SGD(net.parameters(),lr = lr,momentum=momentum)
criterion = nn.CrossEntropyLoss()
print("****************Begin Training****************")
net.train()
for epoch in range(epochs):out = net(cora_data.x,cora_data.edge_index)optimizer.zero_grad()loss_train = criterion(out[cora_data.train_mask],cora_data.y[cora_data.train_mask])loss_val   = criterion(out[cora_data.val_mask],cora_data.y[cora_data.val_mask])loss_train.backward()print('epoch',epoch+1,'loss-train {:.2f}'.format(loss_train),'loss-val {:.2f}'.format(loss_val))optimizer.step()net.eval()
out = net(cora_data.x,cora_data.edge_index)
loss_test = criterion(out[cora_data.test_mask],cora_data.y[cora_data.test_mask])
_,pred = torch.max(out,dim=1)
pred_label = pred[cora_data.test_mask]
true_label = cora_data.y[cora_data.test_mask]
acc = sum(pred_label==true_label)/len(pred_label)
print("****************Begin Testing****************")
print('loss-test {:.2f}'.format(loss_test),'acc {:.2f}'.format(acc))

参数设置

epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

运行图

在这里插入图片描述

相关文章:

PyG-GAT-Cora(在Cora数据集上应用GAT做节点分类)

文章目录 model.pymain.py参数设置运行图 model.py import torch.nn as nn from torch_geometric.nn import GATConv import torch.nn.functional as F class gat_cls(nn.Module):def __init__(self,in_dim,hid_dim,out_dim,dropout_size0.5):super(gat_cls,self).__init__()s…...

java专项练习(验证码)

package 专题练习;import java.util.Random;public class Developing_CAPTCHA {public static void main(String[] args) {/* 需求:定义方法生成一个5位的验证码 验证码长度为5,前四位为大或小写字母,最后一位是数字*///方法: 如果我们要在一堆没有规律的数据中随机抽取,可以先…...

MS1861 视频处理与显示控制器 HDMI转MIPI LVDS转MIPI带旋转功能 图像带缩放,旋转,锐化

1. 基本介绍 MS1861 单颗芯片集成了 HDMI 、 LVDS 和数字视频信号输入;输出端可以驱动 MIPI(DSI-2) 、 LVDS 、 Mini-LVDS 以及 TTL 类型 TFT-LCD 液晶显示。可支持对输入视频信号进行滤波,图 像增强,锐化,对比度调节&am…...

广州华锐互动:利用VR复原文化遗址,沉浸式体验历史文物古迹的魅力

在过去的几十年里,科技发展飞速,为我们打开了无数新的视角和可能性。其中,虚拟现实(Virtual Reality,简称VR)技术的崭新应用,为我们提供了一种全新的、近乎身临其境的体验历史的方式。本文将重点…...

微信小程序——事件监听

微信小程序是一种轻量级的应用程序,它在移动设备上提供了丰富的用户体验。在开发微信小程序时,事件监听是一项重要的技术,它允许开发者捕捉和处理用户的各种操作。本文将介绍微信小程序事件监听的概念、用法和一些实用示例。 1. 什么是事件监…...

View绘制流程的源码所得

一些问题 子线程可以更新 UI 吗 答案是可以的,在特定的情况下可以 可以先在主线程中调用requestLayout() 方法,然后紧接着在子线程中更新UI(原理:不要在子线程触发 checkThread() 方法,而checkThread() 方法的调用时…...

企业级数据仓库-理论知识

D3 AM 大数据中间件 Hive:将SQL转化成分布式Map/Reduce进行运算,也支持转换成Spark,需要单独安装Hive集群才能访问Spark,支持60%的SQL,延迟比较大。SparkSQL:属于Spark生态圈,Hive on Sqark。HBase: NoSQL,高并发读,适…...

解决flutter不识别yaml里面配置的git项目

解决办法找到相应的 git路径,然后手动 git pull 暂时先用这个笨方法,后面有更好的解决办法了再说 studio 自己拉取的项目里面没有ios 和lib包...

rust结构体

一、定义结构体类型 语法 struct Name_of_structure {field1: data_type,field2: data_type,field3: data_type, }注意: 不同于C,Rust的struct语句仅用来定义类型,不能定义实例。 结尾不需要;。 每个字段定义之后用 , 分隔。最后一个逗号可…...

Python - 小玩意 - 键盘记录器

pip install keyboardimport keyboard import timedef get_time():date_time time.strftime("%Y-%m-%d %H:%S", time.localtime())return date_timedef abc(x):if x.event_type down:print(f"{get_time()}你按下了{x.name}")with open(./键盘记录器.txt,…...

msvcp71.dll丢失的解决方法分享,全面分析msvcp71.dll丢失原因

msvcp71.dll 丢失的问题可能困扰着许多使用 Windows 操作系统的用户。msvcp71.dll 是微软 C运行时库中的一个动态链接库文件,负责提供一些基本的函数和类,例如字符串处理、数学运算、文件操作等。如果这个文件丢失或损坏了,那么在使用依赖于它…...

stm32----ADC模数转换

一、ADC介绍 ADC,即模数转换器,它可以将模拟信号转化为数字信号。在stm32种一般有3个ADC,每个ADC有18个通道。 12位ADC是一种逐次逼近型模拟数字转换器,它有多达18个通道,可测量16个外部和两个内部信号源。各个通道的A…...

Unity SteamVR 开发教程:用摇杆/触摸板控制人物持续移动(2.x 以上版本)

文章目录 📕教程说明📕场景搭建📕创建移动的动作📕移动脚本⭐移动⭐实时调整 CharacterController 的高度 📕取消手部和 CharacterController 的碰撞 持续移动是 VR 开发中的一个常用功能。一般是用户推动手柄摇杆&…...

04条件构造器和常用接口

条件构造器和常用接口 wapper介绍 条件构造器的两个条件之间默认就是AND并列关系,如果需要或者的关系则需要调用构造器的or()方法 条件构造器类型作用Wrapper条件构造抽象类,最顶端父类AbstractWrapper生成SQL的where条件QueryWrapper封装查询或删除的条件UpdateWrapper封装修…...

什么是HTTP状态码?常见的HTTP状态码有哪些?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是HTTP状态码?⭐ 1xx - 信息性状态码⭐ 2xx - 成功状态码⭐ 3xx - 重定向状态码⭐ 4xx - 客户端错误状态码⭐ 5xx - 服务器错误状态码⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前…...

vue3的双向绑定原理分析

谈到vue3的双向绑定原理,就得先知道,为什么vue2的双向绑定方式会被废弃? vue2的双向绑定 Object.defineProperty Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性,并返回…...

MySQL数据库时间计算的用法

今天给大家分享如何通过MySQL内置函数实现时间的转换和计算,在工作当中,测试人员经常需要查询数据库表的日期时间,但发现开发人员存入数据库表的形式都是时间戳形式,不利于测试人员查看,测试人员只能利用工具对时间戳进…...

应用在儿童平板防蓝光中的LED防蓝光灯珠

现在电子产品多,手机、平板电脑、电子书等等,由于蓝光有害眼睛健康,于是市场上有很多防蓝光的眼镜、防蓝光的手机膜、防蓝光的平板,这些材料和设备到底有没有用?如何正确预防蓝光危害呢? 我们现在所用的灯…...

BERT 快速理解——思路简单描述

定义: BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,它基于Transformer架构,通过在大规模的未标记文本上进行训练来学习通用的语言表示。 输入 在BERT中,输入…...

二叉树实现的相关函数

1.二叉树的创建 BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi) { if (n0||a[*pi] #){ (*pi);return NULL;}BTNode* root (BTNode*)malloc(sizeof(BTNode));root->_data a[(*pi)];root->_left BinaryTreeCreate(a, --n, pi);root->_right Binary…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...