【每日一题】ARC071D - ### | 前缀和 | 简单
题目内容
原题链接
给定一个长度为 n n n 的数组 a a a 和一个长度为 m m m 的数组 b b b 。
从数组 a a a 中挑出两个数,作为两条平行于 y y y 轴的直线,数组 b b b 中挑出两个数,作为两条平行于 x x x 轴的直线,问这四条直线构成的矩形的面积。
你需要所有可能的矩形的面积之和,答案对 1 0 9 + 7 10^9+7 109+7 取模
数据范围
- 2 ≤ n , m ≤ 2 ⋅ 1 0 5 2\leq n,m\leq 2\cdot 10^5 2≤n,m≤2⋅105
- − 1 0 9 ≤ a i , b i ≤ 1 0 9 -10^9\leq a_i,b_i\leq 10^9 −109≤ai,bi≤109
题解
先对两个数组排序,下标从 0 0 0 开始。
对于数组 a a a ,每个数 a i a_{i} ai,考虑比其小的数的和为 p r e a i − 1 prea_{i-1} preai−1,一共有 i i i 个数比 a i a_i ai 小(小于等于),那么和 a i × i − p r e a i − 1 a_i\times i-prea_{i-1} ai×i−preai−1。
对于数组 b b b 也一样。
但是这里需要考虑的是,对于每个数 a i a_i ai ,其需要与数组 b b b 中任意两个数构成的直线进行计算。
所以考虑 p p r e b i = ∑ j = 0 i b i × p r e b i − 1 ppreb_{i}=\sum\limits_{j=0}^i b_i\times preb_{i-1} pprebi=j=0∑ibi×prebi−1
最后答案就是: ∑ i = 0 n − 1 ( a i × i − p r e a i − 1 ) × p p r e b n − 1 \sum\limits_{i=0}^{n-1} (a_i\times i-prea_{i-1})\times ppreb_{n-1} i=0∑n−1(ai×i−preai−1)×pprebn−1
时间复杂度: O ( n ) O(n) O(n)
代码
#include <bits/stdc++.h>
using namespace std;typedef long long ll;const int MOD = 1e9 + 7;int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;vector<ll> a(n), b(m);for (int i = 0; i < n; ++i) cin >> a[i];for (int i = 0; i < m; ++i) cin >> b[i];sort(a.begin(), a.end());sort(b.begin(), b.end());ll prea = (a[0] % MOD + MOD) % MOD;ll preb = (b[0] % MOD + MOD) % MOD, ppreb = 0;for (int i = 1; i < m; ++i) {ppreb += b[i] * i - preb;ppreb = (ppreb % MOD + MOD) % MOD;preb += b[i];preb %= MOD;}ll ans = 0;for (int i = 1; i < n; ++i) {ll cur = ((a[i] * i - prea) % MOD + MOD) % MOD;ans = (ans + cur * ppreb % MOD) % MOD;prea += a[i];prea %= MOD;}cout << ans << "\n";return 0;
}
相关文章:
【每日一题】ARC071D - ### | 前缀和 | 简单
题目内容 原题链接 给定一个长度为 n n n 的数组 a a a 和一个长度为 m m m 的数组 b b b 。 从数组 a a a 中挑出两个数,作为两条平行于 y y y 轴的直线,数组 b b b 中挑出两个数,作为两条平行于 x x x 轴的直线,问这四…...
(Vue2)VueRouter
VueRouter 修改地址栏路径时,切换显示匹配的组件 使用52: 1下载版本3.6.5(Vue3对应版本4.X) npm add vue-router3.6.5 2引入 import VueRouter from vue-router 3安装注册 Vue.use(VueRouter) 4创建路由对象 const route…...
6.文本注释方法
1.单行注释 在 LaTeX 中,可以使用 % 符号进行单行注释。 2.整段的注释 但如果要注释一整段文字,可以使用 comment 宏包或 \iffalse 和 \fi 命令来实现。 2.1 使用 comment 宏包 在导言区使用 \usepackage{comment} 命令加载 comment 宏包。然后&…...

[Linux打怪升级之路]-缓冲区
前言 作者:小蜗牛向前冲 名言:我可以接受失败,但我不能接受放弃 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 本期学习目标&…...
【力扣】13. 罗马数字转整数
题目描述 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符数值I1V5X10L50C100D500M1000 例如, 罗马数字 2 写做 II ,即为两个并列的 1 。12 写做 XII ,即为 X II 。 27 写…...

高效时间管理,事无巨细掌握——OmniFocus Pro 3 for Mac最强GTD工具
在快节奏的现代生活中,有效地管理和安排时间变得至关重要。如果您正在寻找一款功能强大的时间管理工具,那么OmniFocus Pro 3 for Mac将是您的最佳选择。作为一款专业的GTD(Getting Things Done)应用程序,它为您提供了一…...

解锁前端Vue3宝藏级资料 第五章 Vue 组件应用 3( Slots )
5.4 Slots 我们已经了解到组件能够接收任意类型的 JavaScript 值作为 props,但组件要如何接收模板内容呢?在某些场景中,我们可能想要为子组件传递一些模板片段,让子组件在它们的组件中渲染这些片段。Slots 可用于将Html内容从父组…...

接口测试之文件上传
在日常工作中,经常有上传文件功能的测试场景,因此,本文介绍两种主流编写上传文件接口测试脚本的方法。 首先,要知道文件上传的一般原理:客户端根据文件路径读取文件内容,将文件内容转换成二进制文件流的格…...
7.Flask-Migrate数据库迁移
基本介绍 flask-migrate是基于Alembic的一个封装,并集成到Flask中 所有的迁移操作其实都是Alembic做的,能跟踪模型的变化,并将变化映射到数据库中 一.安装 pip install flask-migrate二.基本使用 2.1初始化数据库迁移脚本 在Flask应用的根目录下,运行命令 flas…...

信创办公–基于WPS的PPT最佳实践系列 (项目8创建电子相册)
信创办公–基于WPS的PPT最佳实践系列 (项目8创建电子相册) 目录 应用背景操作步骤 应用背景 如果我们想把图片弄成相册,或者弄成一段有音乐的视频分享给朋友。我们可以利用PPT来制作。那我们如何用PPT制作电子相册或视频呢?可以跟…...

JRedis的基本操作,基本数据类型操作
Redis的基本数据类型: stringhashlistsetzset {public static void main(String[] args) {Jedis jedis new Jedis("127.0.0.1", 6379);// stringjedis.set("hello", "word");String hello jedis.get("hello");System.o…...

QT网页 webengine / CEF
QT WebEngine 官方文档 WebEngine 架构: 能看到 WebEngine 有一个核心模块是基于 Chromium 构造的,通过使用 Chromium 的Blink渲染引擎和V8 JavaScript引擎来处理和渲染Web内容,并将这些底层技术封装为一系列高级的C类和接口,以…...
Golang笔试题:编写一个函数,接收一个整数参数n,输出n的阶乘结果
今天,我们开发的AI笔试题工具,ai扁食——AI程序员笔试系统给我出了中级Golang题目,就是这道题:《请编写一个函数,接收一个整数参数n,输出n的阶乘结果》,希望我写一个函数,输出n的阶乘…...

外包干了2个月,技术退步明显.......
先说一下自己的情况,大专生,18年通过校招进入武汉某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

无涯教程-JavaScript - BINOM.DIST函数
描述 BINOM.DIST函数返回单个项二项式分布概率。 在具有固定数量的测试或试验的问题中使用BINOM.DIST。 当任何试验的输出只是成功或失败时 试验是独立的,并且 在整个实验中成功的概率不变的情况 语法 BINOM.DIST (number_s,trials,probability_s,cumulative)争论 Argu…...
linux定时重启tomcat
1.编辑重启Tomcat命令 首先编辑一个文件 vi my_restart.sh 然后输入: #!/bin/bash . /etc/profile tomcatPath"/opt/finereport/tomcat" binPath"$tomcatPath/bin" echo "[info][$(date %F %H:%M:%S)]正在监控tomcat,路径&a…...

在静态方法中访问@Value注入的静态变量!!
一、 静态变量 static修饰的成员变量,称为静态成员变量,静态成员变量最大的特性:不属于某个具体的对象,是所有对象所共享的 简单来说:在某些类的对象中存在一些相同的成员变量,那么这种成员变量就可以设置…...
掌握这些算法,让你的编程之路更顺畅——重要算法解析
一个程序员一生中可能会邂逅各种各样的算法,但总有那么几种,是作为一个程序员一定会遇见且大概率需要掌握的算法。这些算法通常被广泛应用于日常编程工作中,是提升编程效率和解决实际问题的重要工具。本文将介绍几种十分重要的“必抓…...

flink集群与资源@k8s源码分析-总述
1 简介 集群和资源模块提供动态资源能力,是分布式系统关键基础设施,分布式datax,分布式索引,事件引擎都需要集群和资源的弹性资源能力,提高伸缩性和作业处理能力。本文分析flink的集群和资源的k8s模块,深入了解其设计原理,为开发自有的集群和资源组件做技术准备, 同时涉…...
LeetCode 0213. 打家劫舍 II:动动态规划
【LetMeFly】213.打家劫舍 II:动动态规划 力扣题目链接:https://leetcode.cn/problems/house-robber-ii/ 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...