当前位置: 首页 > news >正文

国产自研BI系统,更懂中国企业数据分析需求

国产自研BI系统是指由中国企业自主研发的商业智能(BI)系统,这类系统更加了解中国企业的数据分析需求,能够提供更加贴合实际的解决方案。比如说奥威BI系统就是典型的国产自研,不仅了解中国企业的数据分析需求,还根据多年的经验为中国企业量身打造了多套标准化的BI数据分析解决方案,为中国企业提供更低风险、高效性、高性价比的智能数据分析决策服务。

1、国产自研BI系统更加熟悉中国企业的数据特点和使用习惯。

由于中国企业具有自身的业务特点和数据管理模式,因此,国产自研BI系统-奥威BI能够更好地适应这些特点,提供更加贴合实际的解决方案。例如,对于中国企业的财务报表分析,奥威BI系统可以更好地理解各种财务报表的格式和内容,提供更加准确的财务数据分析结果,甚至可以提供标准化的智能财务分析方案。

在这里插入图片描述

2、国产自研BI系统更加注重用户体验和操作便捷性。

由于中国企业对于商业智能系统的使用体验和操作便捷性有较高的要求,因此,奥威BI系统更加注重这些方面。例如,可以通过简单的拖拽和配置来实现复杂的数据分析,同时支持多种数据源的接入和管理,使得用户可以更加轻松地完成数据分析工作。

3、国产自研BI系统具有更高的自主可控性。

由于自主研发的奥威BI系统不受外部制约和限制,因此可以更好地满足企业的实际需求,并且可以更好地保障数据安全。例如,可以通过内置加密算法和权限控制机制来实现数据的安全保护,确保企业的商业机密和隐私不被泄露。

4、国产自研BI系统具有更好的适配性和可扩展性。

由于自主研发的奥威BI系统可以更好地适应企业的实际业务场景和未来发展需求,因此可以为企业提供更加贴合实际的解决方案。同时,国产自研的奥威BI系统也具有更好的可扩展性,可以支持更多的业务场景和应用。

作为一款国产自研BI系统,奥威BI系统更了解中国企业的数据分析需求,注重用户体验和操作便捷性,具有更高的自主可控性、更好的适配性和可扩展性。

相关文章:

国产自研BI系统,更懂中国企业数据分析需求

国产自研BI系统是指由中国企业自主研发的商业智能(BI)系统,这类系统更加了解中国企业的数据分析需求,能够提供更加贴合实际的解决方案。比如说奥威BI系统就是典型的国产自研,不仅了解中国企业的数据分析需求&#xff0…...

基于Java的高校竞赛管理系统设计与实现(亮点:发起比赛、报名、审核、评委打分、获奖排名,可随意更换主题如蓝桥杯、ACM、王者荣耀、吃鸡等竞赛)

高校竞赛管理系统 一、前言二、我的优势2.1 自己的网站2.2 自己的小程序(小蔡coding)2.3 有保障的售后2.4 福利 三、开发环境与技术3.1 MySQL数据库3.2 Vue前端技术3.3 Spring Boot框架3.4 微信小程序 四、功能设计4.1 主要功能描述4.2 系统角色 五、系统…...

出血性脑卒中临床智能诊疗建模

先说下数据,随访流水号是患者的后续诊断号码,表3有对应的数据,首先需要做下数据整理,需要整理出每次诊断的指标(包括表1中人物信息、表2中的检查指标以及表3中的检查指标,表4中有对应的时间,以刚…...

Cesium 空间量算——生成点位坐标

文章目录 需求分析1. 点击坐标点实现2. 输入坐标实现 需求 用 Cesium 生成点位坐标,并明显标识 分析 以下是我的两种实现方式 第一种是坐标点击实现 第二种是输入坐标实现 1. 点击坐标点实现 //点位坐标getLocation() {this.hoverIndex 0;let that this;this.view…...

为什么曲面函数的偏导数可以表示其曲面的法向量?

为什么曲面函数的偏导数可以表示其曲面的法向量? 引用资料: 1.知乎shinbade:曲面的三个偏导数为什么能表示法向量? 2.Geogebra羅驥韡 (Pegasus Roe):偏導數、切平面、梯度 曲面 F ( x , y , z ) 0 F(x,y,z)0 F(x,y,…...

❤Uniapp报npx update-browserslist-db@latest

❤ Uniapp报npx update-browserslist-dblatest 按照提示先更新一下 npx update-browserslist-dblatest然后打开一下端口...

【C++】静态成员函数 ( 静态成员函数概念 | 静态成员函数声明 | 静态成员函数访问 | 静态成员函数只能访问静态成员 )

文章目录 一、静态成员函数简介1、静态成员函数概念2、静态成员函数声明3、静态成员函数访问4、静态成员函数只能访问静态成员 二、代码示例 - 静态成员函数 一、静态成员函数简介 1、静态成员函数概念 静态成员函数归属 : 在 C 类中 , 静态成员函数 是一种 特殊的函数 , 该函数…...

基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(三)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 1、上一节说到RedisReceiver ,这里有调用了NbcioRedisListener自定义业务监听,如下…...

用友第五届开发者大赛初赛晋级公示,复赛火热进行中!

用友第五届开发者大赛初赛晋级公示,复赛火热进行中! 自7月13日鸣锣揭幕,9月6日各赛道作品初评工作完成,历时近两月,用友第五届企业云服务开发者大赛初赛阶段顺利落下帷幕。作为备受各界开发者关注的赛事,本…...

SSL证书如何做到保障网站安全?

当网站显示不安全时,用户会在头脑中产生该网站是否合法的疑问,如果是购物网站或者购物商城,那意味着可能会损失大部分的用户。而SSL证书能有效保障网站的安全性,轻松解决网站不被用户信任的问题。那么,SSL证书究竟是如…...

C# Onnx Yolov8 Detect Poker 扑克牌识别

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...

想要精通算法和SQL的成长之路 - 最长等差数列

想要精通算法和SQL的成长之路 - 最长等差数列 前言一. 最长等差数列 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 最长等差数列 原题链接 思路: 我们假设dp[i][j] 为:以num[i]为结尾,以j为公差的最长等差子序列的长度。由此可知&a…...

【简单的自动曝光】python实现-附ChatGPT解析

1.题目 一个图像有 n 个像素点,存储在一个长度为 n 的数组 img 里, 每个像素点的取值范围[0,255] 的正整数。 请你给图像每个像素点值,加上一个整数 k (可以是负数),得到新图 newImg , 使得新图newImg 的所有像素平均值最接近中位值 128。 请输出这个整数 k。 输入描述 n …...

网工内推 | 运维工程师,CCNP认证优先,周末双休,多次调薪机会

01 驻场运维 职责描述: 1、驻场某大型汽车整车厂,配合客户完成网络相关(路由交换)的项目。 2、按照客户要求,与项目组配合共同完成项目前期调研,设计,规划,项目中期调试测试&#…...

LeetCode 1337. The K Weakest Rows in a Matrix【数组,二分,堆,快速选择,排序】1224

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

如何使用Spring提供的Retry

0、本例中使用的是 springboot-2.0.4.RELEASE&#xff0c;jdk1.8 1、导包。需要注意版本。2.0.0需要spring6和jdk17 <dependency><groupId>org.springframework.retry</groupId><artifactId>spring-retry</artifactId><version>1.3.4<…...

【ONE·Linux || 进程间通信】

总言 进程间通信&#xff1a;简述进程间通信&#xff0c;介绍一些通信方式&#xff0c;管道通信&#xff08;匿名、名命&#xff09;、共享内存等。 文章目录 总言1、进程间通信简述2、管道2.1、简介2.2、匿名管道2.2.1、匿名管道的原理2.2.2、编码理解&#xff1a;用fork来共…...

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源

一、Flink架构及核心概念 1.系统架构 JobMaster是JobManager中最核心的组件,负责处理单独的作业(Job)。一个job对应一个jobManager 2.并行度 (1)并行度(Parallelism)概念 一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任…...

debian终端快捷键设置

为了方便使用图形化debian&#xff0c;快捷调出shell终端是提升工作学习效率的最重要的一步。 1.首先点击右上角&#xff0c;选择设置 2.点击键盘&#xff0c;选择快捷键&#xff0c;并创建自定义快捷键 3.点击添加快捷键 4.根据图中提示创建快捷键 Name: Terminal Command…...

原生ajax

什么是Ajax Asynchronous JavaScript and xml 异步的 js 和 xml(数据承载方式) &#xff0c;本质&#xff1a;使用js提供的异步对象XMLHttpRequest 异步的向服务器提交请求&#xff0c;并且接受服务器响应回来的数据。 使用ajax 1.创建异步对象 var xhrnew XMLHttp…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

shell脚本质数判断

shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数&#xff09;shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数&#xff09; 思路&#xff1a; 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...