当前位置: 首页 > news >正文

Learn Prompt-GPT-4:能力

GPT-4能力大赏​

常识知识推理​

一个猎人向南走了一英里,向东走了一英里,向北走了一英里,最后回到了起点。他看到了一只熊,于是开枪打了它。这只熊是什么颜色的? 答案是白色,因为这种情况只可能发生在北极,那里生活着北极熊。在这种情况下, GPT-4 正确地识别了这些事实,并得出结论,熊是白色的,而它的前身 ChatGPT 放弃了并说“我不知道” 

table1

我驾驶一架飞机离开我的营地,直接向东飞行 24901 英里,然后回到营地。当我回到营地时,看到一个老虎在我的帐篷里吃我的食物!这只老虎是什么物种? 答案是任何生活在赤道上的老虎物种,例如孟加拉虎和苏门答腊虎。AI 系统需要知道地球赤道长 24901 英里,只有在赤道上才能向东或向西行驶并返回同一点,以及哪些老虎物种生活在赤道上。同样,GPT-4 成功地找到了关键信息并解决了谜题,而 ChatGPT 立即放弃了 

table1

编码能力​

让GPT-4生成数据可视化代码 

table1

让 GPT-4 使用模糊的规格要求,用 HTML 和 JavaScript 编写一个 2D 坦克战争游戏。游戏涉及复杂的逻辑和状态管理,包括敌人、玩家、炮弹和墙壁对象的逻辑,以及碰撞的逻辑。再次,GPT-4 生成了一个完全功能的游戏,甚至添加了“常识”未指定的细节,如“炮弹应在撞击墙壁后消失”。它还能够根据用户的请求编辑游戏。相比之下,ChatGPT 不仅拒绝创建游戏,而且生成了一个不会根据 WASD 键移动的正方形和三角形的代码。它根本不动,只有在按下“d”键时向下指,并在按下“a”键时向上指(即使这也是错误的,因为“w”应该向上指,“s”向下指)。

table1

我们要求 GPT-4 和 ChatGPT 预测和解释一个 C 程序的输出,该程序需要打印两个结构的大小。GPT-4 正确地解释了输出可能因编译器使用的对齐规则而异,并给出了一个可能具有 4 字节对齐的输出示例。ChatGPT 忽略了对齐问题,给出了错误的输出,并且还做出了一个关于顺序不影响结构大小的错误陈述。 

table1

数学能力​

两个模型都意识到拉格朗日乘数法在这个问题中很有用(这种策略适用于在约束条件下最小化某个表达式的问题)。虽然 ChatGPT 以错误的方式应用了这种方法(如果是人类,可能会被视为缺乏理解力),但 GPT-4 提出了一个合理的论证。 

table1

对隐函数的求导,GPT-4 正确应用隐函数求导法,考虑到 y 和 x 的导数之间的依赖关系。ChatGPT 的答案以“我们可以使用链式法则”开始,这与此问题无关,并特征是继续附以大多不连贯的论证。 

table1

视觉能力​

使用 Javascript 生成一个 3D 模型。我们用提示语「一个由浮岛、瀑布和桥梁组成的幻想景观,天空中有一只飞龙和一个位于最大岛上的城堡」来对 GPT-4 发出指令。与 2D 实验类似,我们要求 GPT-4 以各种方式修改 3D 模型,如添加、重新定位、重新着色对象和改变飞龙的轨迹等。 

table1

音乐​

当被指示生成一个简短的曲调(下图)时,模型能够生成有效的 ABC 符号。这个曲调有一个清晰的结构,小节之间的拍子一致,音符遵循逐渐上升和下降的模式。曲调还使用了一组一致的音符,节奏有重复的模式。然而,模型似乎没有获得理解和声的技能。事实上,在生成的曲调中,连续的音符几乎总是相邻的(即,跟在 C 后面的音符通常是 B 或 D),在测试了 10 个生成的曲调后,我们无法提取任何清晰的和弦或琶音。

table1

做题能力​

在日常普通的对话任务中,GPT-4和GPT-3.5的差距是非常小的,而随着任务复杂性的增加,GPT-4的优势就会显现出来,它会更可靠更有创造力,并且能处理更细微的指令。OpenAI官方为了验证GPT-4和GPT-3.5的区别, 专门收集了一些考试的问题,比如奥赛的题目,美国AP课程、SAT考试等题目来让模型来做。由于模型预训练的数据集太大了,OpenAI的研究员还专门分开了两个测试版本,一个是直接让模型做题出分数,另一个是把在预训练集中可能出现过的题目去除,让模型去做它没见过的题目,两者取较低分的那个作为模型的考试分数来增加说服力。

下图中展示的是GPT模型的考试结果,横坐标为考试科目,纵坐标为在这些考试中排名的百分比。GPT-4 在大多数考试中都超过了GPT3.5。

table1

table1

然而很有意思的是, 在AP English Writing的这项考试中,模型的分数并不高。根据我们平时使用GPT最常用最强大的功能是用来生成各种文案和语言润色,然而在英语写作考试中,GPT的表现并没有表现的很好,我们猜测GPT没有诞生真正的智能,它还没有真的思考能力,在文本生成的时候很多时候说的话都是很空洞的,这样的文章如果在写作考试中很难拿到足够的高分。

除此之外,GPT在数学方面的能力较差。

当然,在传统的自然语言处理的一些任务的benchmark上,GPT-4还是把榜单都刷新了一遍。 

table1

多语言能力​

除了英文之外,GPT-4在其他语言方面也有优秀的表现,包括了繁体和简体中文,根据下图可以看到在26种语言中,有24种语言GPT-4的表现超越了GPT-3.5和其他的一些语言模型,其中还包括了一些没有什么训练数据的语种(Latvian,Welah, Swahili)。虽然不知道GPT-4的训练预料中有多少语种,但有一些开源的只使用英文预训练的语言模型也具有多语言的能力,这点非常的有意思。 

table1

视觉能力​

GPT-4拥有可以接受图片输入作为Prompt,然后生成文本,CoT(思维链), in-context learning 在图像方面也适用,不过可惜的是图像输入的功能目前GPT-4还在内测,没有公开给大家测试。

相关文章:

Learn Prompt-GPT-4:能力

GPT-4能力大赏​ 常识知识推理​ 一个猎人向南走了一英里,向东走了一英里,向北走了一英里,最后回到了起点。他看到了一只熊,于是开枪打了它。这只熊是什么颜色的? 答案是白色,因为这种情况只可能发生在北…...

iOS——ViewController的生命周期

ViewController ViewController的生命周期是指在应用程序运行过程中,ViewController实例从创建到销毁的整个过程。在这个过程中,ViewController会经历一系列的生命周期方法,这些方法可以帮助开发者管理ViewController及其相关的视图和逻辑。…...

SkyWalking内置参数与方法

参数 全局指标 指标指标名称all_p99所有服务响应时间的 p99 值all_p95所有服务响应时间的 p95 值all_p90所有服务响应时间的 p90 值all_p75所有服务响应时间的 p75 值all_p70所有服务响应时间的 p70 值all_heatmap所有服务响应时间的热点图 服务指标 指标指标名称service_r…...

【C++面向对象侯捷】12.虚函数与多态 | 13.委托相关设计【设计模式 经典做法,类与类之间关联起来,太妙了,不断的想,不断的写代码】

文章目录 12.虚函数与多态举例:委托 继承【观察者模式】13.委托相关设计Composite 组合模式Prototype 原型模式 12.虚函数与多态 纯虚函数 一定要 子类重新定义的 继承和复合 关系下的构造和析构 举例:委托 继承【观察者模式】 13.委托相关设计 问题…...

基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(五)

1、下面提供给前端待办提醒消息的接口SysNoticeController&#xff0c;增加如下&#xff1a; /*** 补充用户数据&#xff0c;并返回系统消息* return*/Log(title "系统消息")GetMapping("/listByUser")public R<Map<String, Object>> listByU…...

hive数据初始化

mysql版本&#xff1a;3.1.3 hive版本&#xff1a; 8.0.31 hive连接配置 <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://node88:3306/hive?createDatabaseIfNotExisttrue</value> </pr…...

React+Node——next.js 构建前后端项目

一、安装全局依赖 npm i -g create-next-app二、创建next项目 create-next-app react-next-demo //或 create-next-app react-next-demo --typescript三、加载mysql依赖 npm i -S mysql2四、运行项目 npm run dev五、创建db文件目录&#xff0c;目录下创建index.ts import…...

CRM系统主要包括哪些功能?

CRM系统应该要包括的功能总结为3大方向—— 核心必须要具备的功能常见尽量要有的功能可选有了自然更好的功能 以我们公司用的简道云CRM系统模板为例&#xff1a;https://www.jiandaoyun.com 01 核心必须要具备的功能 核心功能决定了系统是否能够被纳入CRM类别&#xff0c;这些…...

Nginx location 精准匹配URL = /

Location是什么&#xff1f; Location是Nginx中的块级指令(block directive)&#xff0c;通过配置Location指令块&#xff0c;可以决定客户端发过来的请求URI如何处理&#xff08;是映射到本地文件还是转发出去&#xff09;及被哪个location处理。 匹配模式 分为两种模式&…...

使用JAXB将Java对象转xml

文章目录 使用JAXB将Java对象转xml1. 要求生成的xml2. Java对象3. 封装的工具类4. 测试 使用JAXB将Java对象转xml 1. 要求生成的xml <?xml version"1.0" encoding"UTF-8" ?> <root><result status"success" msg"成功&qu…...

Atlas 200 DK开发板问题总结

1.fatal error: acl/acl.h: No such file or directory 该问题是因为在设置的DDK环境变量下找不到头文件。 解决方法&#xff1a; 1&#xff09;输入echo $DDK&#xff0c;查看当前DDK地址 2&#xff09;在src文件夹下找到CMakeLists.txt文件&#xff0c;发现该文件有一个变量名…...

uniapp——实现二维码生成+保存二维码图片——基础积累

最近在做二维码推广功能&#xff0c;自从2020年下半年到今天&#xff0c;大概有三年没有用过uniapp了&#xff0c;而且我之前用uniapp开发的程序还比较少&#xff0c;因此很多功能都浪费了很多时间去查资料&#xff0c;现在把功能记录一下。 这里写目录标题 效果图1.根据接口返…...

零基础学前端(六)重点讲解 JavaScript

1. 该篇适用于从零基础学习前端的小白&#xff0c;完全从零基础角度出发 2. 我们学习时&#xff0c;应该主动向自己提问&#xff1f;只有你能提出问题&#xff0c;你才算是在编程中学习进步了。 3. 初学者不懂得问题很多&#xff0c;在自己在不懂时&#xff0c;一定要求助有经验…...

数据库问题记录(粗略版)oracle、mysql等主流数据库通用

1. ORA-00918&#xff1a;未明确定义列 该问题情况大致为&#xff1a;select 所取列名错误、重复等问题。 2. “select * from temp where 10; ”的含义 布尔值为FALSE&#xff0c;只返回表结构&#xff0c;不返回数据。 举一反三&#xff1a; select * from temp where 1&…...

ORACLE多列中取出数据最大的一条

1.需求说明&#xff1a; 当查询出来的数据存在多条数据时&#xff0c;想按照一定条件排序取出其中一条数据。 2.使用函数&#xff1a; row_number() over( partition by 分组字段 order by 排序字段 desc&#xff09; 3.示例&#xff1a; --根据table_a中的pk_house&#x…...

Xamarin.Android实现App内版本更新

目录 1、具体的效果2、代码实现2.1 基本原理2.2 开发环境2.3 具体代码2.3.1 基本设置2.3.2 系统的权限授予2.3.3 进度条的layout文件2.3.4 核心的升级文件 3、代码下载4、知识点5、参考文献 1、具体的效果 有事需要在程序内集成自动更新的功能&#xff0c;网上找了下&#xff…...

运维工程师面经

文章目录 前言RedisMongoDBPython中的GIL&#xff08;全局解释器锁&#xff09;Python算法总结 前言 本博客仅做学习笔记&#xff0c;如有侵权&#xff0c;联系后即刻更改 科普&#xff1a; Redis 参考网址 NoSQL技术 基于内存的数据库&#xff0c;并且提供一定的持久化功能…...

stm32之智能垃圾桶实战

之前用过51做过一个垃圾桶的小项目&#xff0c;这里用32重新搞了一下。视频的效果和之前一样&#xff0c;可参考这个垃圾桶效果 。 一、项目描述&#xff08;同51&#xff09; 项目主要是模拟不用手动打开垃圾桶盖&#xff0c;而进行自动操作。自动打开的条件如下&#xff1a…...

【C++面向对象侯捷下】2.转换函数 | 3.non-explicit-one-argument ctor

文章目录 operator double() const {} 歧义了 标准库的转换函数...

UOS Deepin Ubuntu Linux 开启 ssh 远程登录

UOS Deepin Ubuntu Linux 开启 ssh 远程登录 打开控制台 安装 openssh-server sudo apt -y install openssh-server修改 /etc/ssh/ssh_config 文件 sudo vim /etc/ssh/ssh_config找到 # Port 22 去掉 # 注释后 保存 重启 ssh 服务 sudo systemctl restart ssh设置 ssh 服务 开机…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...