【视觉SLAM入门】8. 回环检测,词袋模型,字典,感知,召回,机器学习
"见人细过 掩匿盖覆”
- 1. 意义
- 2. 做法
- 2.1 词袋模型和字典
- 2.1.2 感知偏差和感知变异
- 2.1.2 词袋
- 2.1.3 字典
- 2.2 匹配(相似度)计算
- 3. 提升
前言: 前端提取数据,后端优化数据,但误差会累计,需要回环检测构建全局一致的地图;
1. 意义
- 通俗的讲,机器人两次经过同一个场景,为了检测是同一个场景,这就是回环检测。它可以用来构建全局一致的地图。有了时隔更加久远的约束,一定程度消除累计飘移。形象的想弹簧,就是把原来已经优化好的,拉的更贴近真实位置。
- 回环检测还可以做重定位,在跟踪丢失的时候。
2. 做法
以下是几种做法:
- 取当前图像和历史所有图像一一进行特征提取并比对,通过匹配的数量确定。O( n 2 n^2 n2),缺点资源;
- 还是上边的方法,但不一一匹配,随机抽取,可检测到的帧少很多;
- 里程计配合给一个大致位置,这里的进行回环检测,缺点里程计自带误差,只能小范围;
- 基于外观,主流,其中一种就是词袋模型。
2.1 词袋模型和字典
2.1.2 感知偏差和感知变异
感知偏差(假阳性),感知变异(假阴性)

-
准确率(检测正确的数量 / 检测的总数量): P r e c i s i o n = T P / ( T P + F P ) Precision = TP/(TP+FP) Precision=TP/(TP+FP)
-
召回率(实际检测出来的数量 / 理应检测出来的数量): R e c a l l = T P / ( T P + F N ) Recall = TP/(TP+FN) Recall=TP/(TP+FN)
一般这两个数据呈矛盾,不取极端,只说在recall为多少,pre为多少时候效果最好,一般我们对P的要求更高。这是回环检测的严格性导致的。
2.1.2 词袋
- 字典实际就是对所有图片中的特征进行提取,比如"人","车"等,它们是单词,对全部图像特征提取所有单词(特征)后构成一个字典。
- 词袋说的是一帧图像中,能够提取出来的单词。
比如现在有一本4个特征的字典: D = [ x 1 , x 2 , x 3 , x 4 ] D = [x_1,x_2,x_3,x_4] D=[x1,x2,x3,x4]
而我们有两个 x 1 x_1 x1 一个 x 3 x_3 x3 特征的图像,那用词袋可以记为:
A = 2 ⋅ x 1 + 0 ⋅ x 2 + 1 ⋅ x 3 + 0 ⋅ x 4 A = 2\cdot x_1 + 0\cdot x_2 + 1\cdot x_3 + 0\cdot x_4 A=2⋅x1+0⋅x2+1⋅x3+0⋅x4
它的向量就是
A = [ 2 , 1 , 0 , 0 ] A = [2,1,0,0] A=[2,1,0,0]
那么检测两个图像,则举例可以用
s ( a , b ) = 1 − 1 W ∣ ∣ a − b ∣ ∣ 1 s(a,b) = 1 - \frac{1}{W}||a-b||_1 s(a,b)=1−W1∣∣a−b∣∣1
L1范数,各元素绝对值之和,向量完全一样则得到1,是回环。
2.1.3 字典
字典里的单词是某一类特征的组合,类似于一个聚类问题,UML(无监督学习常见问题)。
- 假设要做 k k k 个单词的字典,可以用K-means,K-means++等实现,这里以K-means(均值)为例:

字典规模大,要在字典中查找单词属于哪个,逐个查找复杂度 O ( n ) O(n) O(n),参考数据结构,这里有很多优化方法,这里以最简单的K叉树为例去优化字典结构:

又很像K-D树,聚类类中类,聚中聚哈哈。一棵深度为 d d d , 分支为 k k k 的树,可以容纳, k d k^d kd 单词。
2.2 匹配(相似度)计算
两个概念:
- TF(Term Frequency)译频率: 某单词在一副图像中经常出现,它的区分度就高;
- IDF(Inverse Document Frequency)逆文档频率: 某单词在字典中出现的频率低,它的区分度就高;
-
在做字典时候,用IDF,假设所有特征总数为 n n n, 当前要统计的单词特征 w i w_i wi 的数量为 n i n_i ni, 则此单词的IDF为:
I D F i = l o g n n i IDF_i = log \frac{n}{n_i} IDFi=lognin -
对一副图像而言,假设特征/单词 w i w_i wi 出现了 n i n_i ni 次,而这幅图一共出现的单词数量为 n n n,则TF为:
T F i = n i n TF_i = \frac{n_i}{n} TFi=nni -
基于以上知识,一个图像的特征点可以对应到很多单词,则它的词袋(BOW)为:
A = ( w 1 , η 1 ) , ( w 2 , η 2 ) , . . . , ( w N , η N ) ⟺ v A A = {(w_1, \eta _1), (w_2, \eta _2), ... , (w_N, \eta _N)} \iff v_A A=(w1,η1),(w2,η2),...,(wN,ηN)⟺vA
词袋中有很多0值,因为它不能包含字典中所有词。 -
计算两图词袋的差异(匹配度),给出一种方式(一范数),还有很多:
s ( v A − v B ) = 2 ∑ i = 1 N ∣ v A i ∣ + ∣ v B i ∣ − ∣ v A i − v B i ∣ s(v_A - v_B) = 2\sum^N_{i=1}|v_{Ai}| +|v_{Bi}|-|v_{Ai}-v_{Bi}| s(vA−vB)=2i=1∑N∣vAi∣+∣vBi∣−∣vAi−vBi∣
3. 提升
对于回环检测,有几点可以提升的部分:
- 增加字典规模
- 相似性评分处理
对于环境外观相似,比如教室同款椅子很多,利用先验的相似度(某时刻关键帧图像与上一时刻关键帧的相似性)进行归一化:
s ( v t , v t j ) ′ = s ( v t , v t j ) / s ( v t , v t − Δ t ) s(v_t,v_{tj})' = s(v_t,v_{tj})/s(v_t,v_{t-\Delta t}) s(vt,vtj)′=s(vt,vtj)/s(vt,vt−Δt)
- 关键帧处理
- 相邻帧肯定满足回环检测条件,因为变化太小,所以回环检测的帧一般稀疏;
- 检测到的回环相邻帧意义不大,一帧就可以优化轨迹,因此会把相近的回环聚类成一类,使算法不会反复检测同一类。
- 验证
词袋没有顺序,相机颠倒也是回环,如何验证?
回环缓存机制是一种,单词检测到的回环不足以构成约束,在一段时间内一直检测到的回环才是正确的回环(时间上的一致性检测)
- 机器学习应用于类别
图像连续变化产生不同类别,甚至可以认为是连续的;
图像间相似性可以利用深度学习方法;
词袋方法的物体识别能力不如神经网络,回环检测类似。
相关文章:
【视觉SLAM入门】8. 回环检测,词袋模型,字典,感知,召回,机器学习
"见人细过 掩匿盖覆” 1. 意义2. 做法2.1 词袋模型和字典2.1.2 感知偏差和感知变异2.1.2 词袋2.1.3 字典 2.2 匹配(相似度)计算 3. 提升 前言: 前端提取数据,后端优化数据,但误差会累计,需要回环检测构建全局一致的地图&…...
SpringBean的生命周期
SpringBean的生命周期 SperingBean的生命周期是从Bean实例化之后,即通过反射创建出对象之后,到Bean成为一个完整对象,最终存储到单例池中,这个过程被称为Spring Bean的生命周期。Spring Bean的生命周期大体上分为三个阶段 Bean的…...
uni-app 之 picker选择器
uni-app 之 picker选择器 同步滚动:开 uni-app 之 picker选择器 一、普通选择器 二、多列选择器 三、时间选择器 四、日期选择器 一、普通选择器 <template><view><picker change"bindPickerChange" :value"index" :range&q…...
整合车辆出险报告Api接口,轻松管理车险理赔!
随着车辆保有量的不断增加,车辆出险的情况也越来越普遍。对于车主来说,如何高效地管理车险理赔,处理保险事故是非常重要的。这时候我们就可以借助整合车辆出险报告API接口,实现快速定位理赔信息,轻松管理车险理赔。 一…...
eNSP基础网络学习-v02
一、eNSP 1.什么是eNSP eNSP(Enterprise Network Simulation Platform)是一款由华为提供的免费的、可扩展的、图形化操作的网络仿真工具平台,主要对企业网络路由器、交换机进行软件仿真,完美呈现真实设备实景,支持大型网络模拟,让…...
mac环境安装多个node版本(可切换)
出现问题 mac m1pro版(前段时间刚换的),环境安装的都是最新的。node 18.17.1 前端跑的是react 18 的项目(antD), 又跑了一个相对环境配置比较低的项目,然后启动不起来了; 分析控制台报错,推断是…...
Linux 操作技巧
目录 一、shell-命令解释器 二、Linux中的特殊符号 三、命令历史--history 一、shell-命令解释器 shell——壳,命令解释器,负责解析用户输入的命令 ——内置命令(shell内置) ——外置命令,在文件系统的某个目录下&…...
一个电子信息工程学生的历程和内心感想
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、我对大学三年专业课程的理解二、我为什么本科选择研究嵌入式这个方向?1.可以把理论变为实际应用——兴趣是最好的老师。2.嵌入式方向可以打的比赛非…...
【zookeeper】zk集群安装与启动踩坑点
zk安装我也踩了一些坑。特别是第一点,zk官网好像都没什么说明,导致直接下错了,搞了好几个小时。 踩坑点如下: 1,在zk官网下载包时,注意3.5以后的版本,要下载带-bin的,3.5之后&…...
【计算机网络】 拥塞控制
文章目录 背景TCP的四种拥塞控制算法慢开始与拥塞避免:快重传:快恢复: 流量控制和拥塞控制本质上的 区别 背景 网络中的链路容量和交换节点中的缓存和处理机都有着工作的极限,当网络的需求超过他们的工作极限时,就出现…...
【react】慎用useLayoutEffect转而使用useEffect
由于useLayoutEffect钩子是在dom获得后、渲染组件前。因此,如果在useLayoutEffect中设置一些长耗时的,或者死循环之类的任务,会导致内存堆栈溢出。这时候需要转用useEffect。 // 适配全局宽度拉动变化时,legend显示数量React.use…...
基于微信小程序的美食推荐系统设计与实现(源码+lw+部署文档+讲解等)
前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 👇🏻…...
laravel框架 - 消息队列如何使用
业务场景:项目里边有很多视频资源需要上传到抖音资源库,通过队列一条一条上传。 参考实例:发送邮件,仅供参考 (1)创建任务【生成任务类】 在你的应用程序中,队列的任务类都默认放在 app/Jobs 目录下。如果这个目录不存…...
Dependency ‘org.redisson:redisson:‘ not found解决方法 三种刷新Maven项目的方法
报错情况 在pom中导入redisson包 <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId> </dependency> 爆红,还显示Dependency org.redisson:redisson: not found。 由于报错已经解决,…...
Mysql高级——索引优化和查询优化(1)
索引优化 1. 数据准备 学员表插50万条, 班级表插1万条。 建表 CREATE TABLE class (id INT ( 11 ) NOT NULL AUTO_INCREMENT,className VARCHAR ( 30 ) DEFAULT NULL,address VARCHAR ( 40 ) DEFAULT NULL,monitor INT NULL,PRIMARY KEY ( id ) ) ENGINE INNO…...
Oracle for Windows安装和配置——Oracle for Windows数据库创建及测试
2.2. Oracle for Windows数据库创建及测试 2.2.1. 创建数据库 1)启动数据库创建助手(DBCA) 进入%ORACLE_HOME%\bin\目录并找到“dbca”批处理程序,双击该程序。具体如图2.1.3-1所示。 图2.1.3-1 双击“%ORACLE_HOME%\bin\dbca”…...
【1993. 树上的操作】
来源:力扣(LeetCode) 描述: 给你一棵 n 个节点的树,编号从 0 到 n - 1 ,以父节点数组 parent 的形式给出,其中 parent[i] 是第 i 个节点的父节点。树的根节点为 0 号节点,所以 par…...
LeetCode【1. 两数之和】
穷通有命无须卜,富贵何时乃济贫;角逐名场今已久,依然一幅旧儒巾。 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输…...
3D成像技术概述
工业4.0时代,三维机器视觉备受关注,目前,三维机器视觉成像方法主要分为光学成像法和非光学成像法,这之中,光学成像法是市场主流。 飞行时间3D成像 飞行时间成像(Time of Flight),简称TOF,是通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉…...
Centos7 安装部署 Kubernetes(k8s) 高可用集群
1:基础环境准备 宿主机系统集群角色服务器IP主机名称容器centos7.6master192.168.2.150ks-m1dockercentos7.6master192.168.2.151ks-n1dockercentos7.6master192.168.2.152ks-n2docker 1.1 服务器初始化及网络配置 VMware安装Centos7并初始化网络使外部可以访问*…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
