当前位置: 首页 > news >正文

113双周赛

题目列表

2855. 使数组成为递增数组的最少右移次数

2856. 删除数对后的最小数组长度

2857. 统计距离为 k 的点对

2858. 可以到达每一个节点的最少边反转次数

一、使数组成为递增数组的最少右移次数

这题可以直接暴力求解,枚举出每种右移后的数组,将它和排完序后的数组比较,时间复杂度为O(n^2)

代码如下

class Solution {
public:int minimumRightShifts(vector<int>& nums) {vector<int> v=nums;sort(v.begin(),v.end());for(int i=0;i<nums.size();i++){if(v==nums) return i;nums.insert(nums.begin(),nums.back());nums.pop_back();}return -1;}
};

这个能过,但是有没有更快的算法,我们观察一下这个数组,如果它要是能右移成递增数组,那么它必然是由两个递增数组构成的,且前一个数组的最小值,一定大于后一个数组的最大值,答案就是第二个数组的长度,所以我们只要试着将数组拆分成两个递增数组就行(边界条件挺多,一定要细节),时间复杂度为O(n)

代码如下

class Solution {
public:int minimumRightShifts(vector<int>& nums) {int end1=0,n=nums.size();while(end1+1<n&&nums[end1]<nums[end1+1])end1++;if(end1==n-1) return 0;int end2=end1+1;while(end2+1<n&&nums[end2]<nums[end2+1])end2++;if(end2!=n-1||nums[0]<nums[n-1]) return -1;else return n-end1-1;}
};

二、删除数对后的最小数组长度

这题还是比较难想到的,比较绕。我们需要多枚举几个例子,然后就会发现,当某个数的个数cnt大于等于数组长度n的一半时,最优的方案就是将它前后的数都与它相互抵消(因为如果还让其他数相互抵消,那么剩余的和该数相抵消的元素个数就会变小,从而该元素剩下的个数就会变多),所以答案就是cnt-(n-cnt)=2*cnt-n,那么如果没有一个数的个数大于数组长度的一半呢?

首先从最特殊的数组中数字都是唯一的情况开始讨论,那么显然,当数组长度为偶数时,答案为0,当数组长度为奇数时,答案为1,那么是不是所有的情况都符合这个规律呢?答案是,确实都符合这个规律,因为所有的数的个数都<n/2,那么我们就可以通过抵消,将数的个数全部化成1

代码如下

class Solution {
public:int minLengthAfterRemovals(vector<int>& nums) {unordered_map<int,int>cnt;int n=nums.size(),ans=n&1;//n&1,奇数为1,偶数为0for(auto x:nums)++cnt[x];for(auto [x,y]:cnt)if(y>n/2)ans=max(ans,2*y-n);return ans;}
};

当然这题如果想不到这么深,那么也可以用最基本的贪心,每次拿出出现次数最大的两个元素相抵消,直到剩下零个数或剩下一个数为止。代码如下

class Solution {
public:int minLengthAfterRemovals(vector<int>& nums) {unordered_map<int,int>cnt;int n=nums.size(),ans=n&1;for(auto x:nums)++cnt[x];priority_queue<int>q;for(auto [x,y]:cnt)q.push(y);while(q.size()>1){int x=q.top();q.pop();int y=q.top();q.pop();x--,y--;if(x)q.push(x);if(y)q.push(y);}return q.empty()?0:q.top();}
};

三、统计距离为k的点对

看到两个数的和k,以及k的数据范围,我们就要想到这题能用暴力枚举点来做,然后通过枚举到的点,求出与之相对应的点的坐标,答案加上之前出现的该点个数(用哈希表统计),代码如下

class Solution {
public:int countPairs(vector<vector<int>>& coordinates, int k) {int n=coordinates.size();unordered_map<long long,int>cnt;int ans=0;for(auto& e:coordinates){int x=e[0],y=e[1];for(int i=0;i<=k;i++){auto it=cnt.find((x^i)*1000000LL+(y^(k-i)));if(it!=cnt.end())ans+=it->second;}cnt[x*1000000LL+y]++;}return ans;}
};

 四、可以到达每一个节点的最小边反转次数

这题是换根dp,即通过根节点的最小边反转次数,来得到它孩子结点的最小边反转次数,因为它的孩子结点的反转边的个数就和它父节点的最小边反转次数相差一个它俩之间的边是否需要翻转,其它的都一样。

代码如下

class Solution {
public:vector<int> minEdgeReversals(int n, vector<vector<int>>& edges) {//建图vector<vector<pair<int,int>>>g(n);for(auto& e:edges){int x=e[0],y=e[1];g[x].push_back({y,1});//顺便记录一下边的方向,1为正,-1为逆g[y].push_back({x,-1});}vector<int>ans(n);//计算根节点的最少边反转次数function<void(int,int)>dfs=[&](int x,int fa){for(auto& [y,dir]:g[x]){if(y!=fa){ans[0]+=(dir<0);//方向反的需要反转dfs(y,x);}}};dfs(0,-1);//换根dpfunction<void(int,int)>reroot=[&](int x,int fa){for(auto& [y,dir]:g[x]){if(y!=fa){ans[y]=ans[x]+dir;reroot(y,x);}}};reroot(0,-1);return ans;}
};

相关文章:

113双周赛

题目列表 2855. 使数组成为递增数组的最少右移次数 2856. 删除数对后的最小数组长度 2857. 统计距离为 k 的点对 2858. 可以到达每一个节点的最少边反转次数 一、使数组成为递增数组的最少右移次数 这题可以直接暴力求解&#xff0c;枚举出每种右移后的数组&#xff0c;将…...

React 全栈体系(九)

第五章 React 路由 一、相关理解 1. SPA 的理解 单页 Web 应用&#xff08;single page web application&#xff0c;SPA&#xff09;。整个应用只有一个完整的页面。点击页面中的链接不会刷新页面&#xff0c;只会做页面的局部更新。数据都需要通过 ajax 请求获取, 并在前端…...

阈值化分割,对灰度级图像进行二值化处理(数字图像处理大题复习 P8)

文章目录 画出表格求出灰度直方图 & 山谷画出结果图 画出表格 有几个0就写几&#xff0c;有几个1就写几&#xff0c;如图 求出灰度直方图 & 山谷 跟前面求灰度直方图的方法一样&#xff0c;找出谷底&#xff0c;发现结果为 4 画出结果图 最终的结果就是&#xf…...

vue3中withDefaults是什么

问: const props withDefaults(defineProps<{// 数据列表lotteryList: { pic: string; name?: string }[];// 中奖idwinId: number;// 抽奖初始转动速度initSpeed: number;// 抽奖最快转动速度fastSpeed: number;// 抽奖最慢转动速度slowSpeed: number;// 基本圈数baseCi…...

Android进阶之路 - 盈利、亏损金额格式化

在金融类型的app中&#xff0c;关于金额、数字都相对敏感和常见一些&#xff0c;在此仅记录我在金融行业期间学到的皮毛&#xff0c;如后续遇到新的场景也会加入该篇 该篇大多采用 Kotlin 扩展函数的方式进行记录&#xff0c;尽可能熟悉 Kotlin 基础知识 兄弟 Blog StringUti…...

工业蒸汽量预测(速通一)

工业蒸汽量预测&#xff08;一&#xff09; 赛题理解1、评估指标2、赛题模型3、解题思路 理论知识1、变量识别2、变量分析3、缺失值处理4、异常值处理5、变量转换6、新变量生成 数据探索1、导包2、读取数据3、查看数据4、可视化数据分布4.1箱型图4.2获取异常数据并画图4.3直方图…...

机器学习的主要内容

分类任务 回归任务 有一些算法只能解决回归问题有一些算法只能解决分类问题有一些算法的思路既能解决回归问题&#xff0c;又能解决分类问题 一些情况下&#xff0c; 回归任务可以转化为分类任务&#xff0c; 比如我们预测学生的成绩&#xff0c;然后根据学生的成绩划分为A类、…...

华为OD机试真题-分积木-2023年OD统一考试(B卷)

题目描述: Solo和koko是两兄弟,妈妈给了他们一大堆积木,每块积木上都有自己的重量。现在他们想要将这些积木分成两堆。哥哥Solo负责分配,弟弟koko要求两个人获得的积木总重量“相等”(根据Koko的逻辑),个数可以不同,不然就会哭,但koko只会先将两个数转成二进制再进行加…...

SpringBoot自动装配原理及分析

一、什么是自动装配 在使用SpringBoot的时候&#xff0c;会自动将Bean装配到IoC容器中。例如我们在使用Redis数据库的时候&#xff0c;会引入依赖spring-boot-starter-data-redis。在引入这个依赖后&#xff0c;服务初始化的时候&#xff0c;会将操作Redis需要的组件注入到IoC…...

Android开发笔记 :理解Fragment

Android开发笔记&#xff1a;理解Fragment 导言 本篇文章产生的原因很简单&#xff0c;就是我在了解Android Jetpack中的Lifecycle框架时发现Lifecycle具体时间和状态的更新都是由一个名为ReportFragment的Fragment来跟踪的&#xff0c;为了更好的了解Fragment是如何追踪Activ…...

std::chrono获取当前秒级/毫秒级/微秒级/纳秒级时间戳

当前时间戳获取方法 先使用std::chrono获取当前系统时间&#xff0c;然后将当前系统时间转换为纪元时间std::time_t类型&#xff0c;之后使用std::localtime对std::time_t类型转换为本地时间结构体std::tm类型&#xff0c;最后使用strftime对时间进行格式化输出。 其中std::t…...

sh文件介绍及linux下执行

Shell脚本是一种用于自动化任务和系统管理的脚本语言。它允许用户通过命令行界面执行一系列命令&#xff0c;从而简化了重复性任务的处理过程。 以下是关于Shell脚本的一些基本概念&#xff1a; 1. Shell脚本通常以“.sh”扩展名保存&#xff0c;例如“script.sh”。 2. Shell…...

js-cookie使用 js深度克隆(判断引用类型是数组还是对象的方法)

cookie和深度拷贝的使用 1、js-cookie使用2、js深度克隆 1、js-cookie使用 前端的本地存储分为 localstorage、sesstionstorage、cookie 但是咱们有时候需要做7天免登录的需求时&#xff0c;选择 cookie 作为前端的本地存储是在合适不过的了 直接操作 cookie 可以&#xff0c; …...

[Pytorch]语义分割任务分类的实现

文章目录 [Pytorch]语义分割任务分类的实现 [Pytorch]语义分割任务分类的实现 假如我们定义了一个网络用于语义分割任务&#xff0c;这个网络简称为model() 语义分割任务要做的是&#xff1a; 对于一个图片输入input&#xff0c;大小为&#xff08;B&#xff0c;C&#xff0c…...

测试网页调用本地可执行程序(续:带参数调用)

前篇文章介绍了网页调用本地可执行程序的方式&#xff0c;通过在注册表中注册命令&#xff0c;然后在网页中调用命令启动本地程序。如果需要传递参数&#xff0c;则需要在注册表命令中的command项中设置如下形式的值。 "XXXXXX\XXXXXXX.exe" "%1"&emsp…...

Carla自动驾驶模拟器安装和使用

Carla自动驾驶模拟器安装和使用 1 安装 ubuntu20.04安装carla0.9.11版本 步骤1&#xff1a;打开下面链接&#xff0c;点击第一个[Ubuntu] CARLA_0.9.11.tar.gz carla-0.9.11源码下载 步骤2&#xff1a;下载完解压到/opt目录下 我的话是先在下载目录上提取解压&#xff0c;然…...

【每日一题】1539. 第 k 个缺失的正整数

1539. 第 k 个缺失的正整数 - 力扣&#xff08;LeetCode&#xff09; 给你一个 严格升序排列 的正整数数组 arr 和一个整数 k 。 请你找到这个数组里第 k 个缺失的正整数。 示例 1&#xff1a; 输入&#xff1a;arr [2,3,4,7,11], k 5 输出&#xff1a;9 解释&#xff1a;缺失…...

AI-Chat,一款集全网ai功能的应用(附下载链接)

AI-Chat是一款综合性的聊天机器人&#xff0c;集成了多种先进的模型和功能。它采用了GPT4.0、联网版GPT和清华模型等多种模型&#xff0c;使得其具备更强大的语言处理能力。同时&#xff0c;AI-Chat还融合了AI绘画模型&#xff0c;例如Stable Diffusion绘画、文生图、图生图、艺…...

3、靶场——Pinkys-Place v3(3)

文章目录 一、获取flag41.1 关于SUID提权1.2 通过端口转发获取setuid文件1.3 运行pinksecd文件1.4 利用nm对文件进行分析1.5 构建payload1.6 Fire 二、获取flag52.1 生成ssh公钥2.2 免密登录ssh2.3 以pinksecmanagement的身份进行信息收集2.4 测试程序/usr/local/bin/PSMCCLI2.…...

什么是 AirServer?Mac专用投屏工具AirServer 7 .27 for Mac中文破解版百度网盘下载

AirServer 7 .27 for Mac中文免费激活版是一款Mac专用投屏工具&#xff0c;能够通过本地网络将音频、照片、视频以及支持AirPlay功能的第三方App&#xff0c;从 iOS 设备无线传送到 Mac 电脑的屏幕上&#xff0c;把Mac变成一个AirPlay终端的实用工具。 目前最新的AirServer 7.2…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...