分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测
分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测
目录
- 分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
1.Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测(完整源码和数据)
2.优化参数为:学习率,批量处理大小,正则化参数。
3.图很多,包括分类效果图,迭代优化图,混淆矩阵图。
4.附赠案例数据可直接运行main一键出图~
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.输入多个特征,分四类。
程序设计
- 完整程序和数据获取方式(资源处下载):Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测。
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1") % Relu 激活层lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") softmaxLayer("Name", "softmax") % softmax激活层classificationLayer("Name", "classification")]; % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测
分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预…...

分享一个java+springboot+vue校园电动车租赁系统(源码、调试、开题、lw)
💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等,大家有这一块的问题可以一起交流! 💕&…...

高性能计算环境下的深度学习异构集群建设与优化实践
★深度学习;模式识别;图像处理;人工智能建模;人工智能;深度学习算法;强化学习;神经网络;卷积神经网络;人工神经网络;VIBE算法;控制系统仿真&#…...
Laravel框架 - Facade门面
1 、官方文档给出的定义 “Facades 为应用的 服务容器 提供了一个「静态」 接口。Laravel 自带了很多 Facades,可以访问绝大部分功能。Laravel Facades 实际是服务容器中底层类的 「静态代理」 ,相对于传统静态方法,在使用时能够提供更加灵活…...

算法通关村第16关【青铜】| 滑动窗口思想
1. 滑动窗口的基本思想 一句话概括就是两个快慢指针维护的一个会移动的区间 固定大小窗口:求哪个窗口元素最大、最小、平均值、和最大、和最小 可变大小窗口:求一个序列里最大、最小窗口是什么 2. 两个入门题 (1)子数组最大平…...

CentOS安装openjdk和elasticsearch
CentOS安装openjdk 文章目录 CentOS安装openjdk一、yum1.1search1.2安装openjdk 二、elasticsearch的启动和关闭2.1启动2.2关闭2.3添加服务 一、yum 1.1search yum search java | grep jdk1.2安装openjdk [roottest ~]# yum install java-1.8.0-openjdk -y 查看openjdk版本 …...

【新版】系统架构设计师 - 案例分析 - 信息安全
个人总结,仅供参考,欢迎加好友一起讨论 文章目录 架构 - 案例分析 - 信息安全安全架构安全模型分类BLP模型Biba模型Chinese Wall模型 信息安全整体架构设计WPDRRC模型各模型安全防范功能 网络安全体系架构设计开放系统互联安全体系结构安全服务与安全机制…...
数据库设计(火车订票系统)
为一个火车订票系统设计一个数据库是一个好的方法来训练你的数据库技巧。 其中有一些需要考虑到的复杂度。 过一些需求,并且创建表格。 为这个虚构的火车订票系统提出了10个需求。 我们将把其中每个添加到entity relational diagram(实体关系图&…...
qemu+docker在服务器上搭建linux内核调试环境
基于docker和qemu的操作系统实验环境 参考以上文章实现。 其中 docker run -it --name linux_qemu qemu /bin/bash #从qemu镜像启动一个容器linux_qemu,进入shell 要改为 docker run -it --name linux_qemu 3292900173/qemu /bin/bash另外,在vscode运行过程中,ssh远…...

Stable Diffusion 参数介绍及用法
大模型 CheckPoint 介绍 作用:定调了作图风格,可以理解为指挥者 安装路径:models/Stable-diffusion 推荐: AnythingV5Ink_v32Ink.safetensors cuteyukimixAdorable_midchapter2.safetensors manmaruMix_v10.safetensors counterf…...
打印大对象日志导致GC问题的解决
内容: rpc调用外部服务时,需要将req和resp的信息打印出来,以便于排查问题。但是有的rpc服务的resp信息过于庞大,比如resp中有List<>信息,list很大很大时会导致log.info打印信息时,产生GC,…...
【Docker】学习笔记
1. docker基本操作 镜像搜索 // 直接搜索镜像资源 docker search mysql // 搜索过滤 docker search --filter "is-officialtrue" mysql // 官方发布镜像拉取镜像 docker pull mysql查看本地镜像 docker images删除本地镜像 docker rmi mysql // 强制删除镜像 d…...

网易云信4K 8K RTC助力远程医疗的技术实践
// 编者按:随着近年来国家关于缓解医疗资源分配不均的一系列政策出台,远程医疗作为平衡医疗资源分配的有力手段,目前正处于强劲发展阶段。网易云信运用超高清RTC视频技术助力医疗行业实现了远程高清视频病理分析和手术示教等能力。LiveVide…...

【排序算法】冒泡排序、插入排序、归并排序、希尔排序、选择排序、堆排序、快速排序
目录 几大排序汇总 1.冒泡排序 性能: 思路和代码: 2.插入排序 性能: 思路和代码: 3.归并排序 性能: 思路和代码: 4.希尔排序 性能: 思路和代码: 5.选择排序 性能: 思路和代码: 6.堆排序 性能: 思路和代码: topK问题 7.快速排序 性能: 思路和代码: 几大排…...
Linux学习笔记-应用层篇
1、Linux进程、线程概念/区别 Linux进程和线程是计算机系统中两种不同的资源分配和调度单位。 进程是计算机系统进行资源分配和调度的基本单位,也被认为是正在运行的程序。在面向线程的计算机结构中,进程是线程的容器。进程拥有独立的内存和系统资源&am…...

MySQL数据库的存储引擎
目录 一、存储引擎概念 二、存储引擎 2.1MyISAM 2.11MyISAM的特点 2.12MyISAM表支持3种不同的存储格式: 2.2 InnoDB 2.21InnoDB特点介绍 三、InnoDB与MyISAM 区别 四、怎么样选择存储引擎 五、查看存储引擎 六、查看表使用的存储引擎 七、修改存储引擎 …...

Linux-多路转接-epoll
epoll 接口认识epoll_createepoll_ctlepoll_wait epoll工作原理在内核中创建的数据结构epoll模型的一个完整工作流程 epoll工作模式LT-水平触发ET-边缘触发两种方式的对比 epoll的使用场景对于poll的改进惊群效应什么是惊群效应如何解决惊群效应原子操作/mutex/spinlock如何选择…...

Java面试被问了几个简单的问题,却回答的不是很好
作者:逍遥Sean 简介:一个主修Java的Web网站\游戏服务器后端开发者 主页:https://blog.csdn.net/Ureliable 觉得博主文章不错的话,可以三连支持一下~ 如有需要我的支持,请私信或评论留言! 前言 前几天参加了…...
概率论几种易混淆的形式
正态分布标准型 x − μ σ \frac{x - \mu}{\sigma} σx−μ 大数定律形式 P { X ≤ ∑ i 1 n x i − n μ n σ 2 } ∫ − ∞ X 1 2 π e − x 2 2 d x P\{X \le \frac{\sum_{i 1}^{n}x_i -n\mu}{\sqrt{n\sigma^2}} \} \int _{-\infty}^{X}\frac{1}{\sqrt{2\pi}}e^{-\fr…...
PyTorch数据增强后的结果展示
from PIL import Image import torch from torchvision import transformstrans transforms.Compose([transforms.ToTensor(), transforms.RandomErasing(p0.9, value 120, inplaceTrue)]) # 这里Compose是所做的变换img_path 02-56-45-060-1454-camra1.bmp img Image.open…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...