当前位置: 首页 > news >正文

密度估计公式

  1. 极大似然估计:

y = p ( x 1 , x 2 , x 3 , . . . , x n ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 y = p(x_1,x_2,x_3,...,x_n) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} y=p(x1,x2,x3,...,xn)=2π σ1e2σ2(x1μ)22π σ1e2σ2(x2μ)2...2π σ1e2σ2(xnμ)2

l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 lny = ln p(x_1,x_2,x_3,...,x_n) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} ) =\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} lny=lnp(x1,x2,x3,...,xn)=ln(2π σ1e2σ2(x1μ)22π σ1e2σ2(x2μ)2...2π σ1e2σ2(xnμ)2)=nln(2π σ)i=1n2σ2(xiμ)2

要求y的极限值(将 μ 和 σ \mu 和 \sigma μσ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:

∂ ln ⁡ y ∂ μ = ∑ i = 1 n ( x i − μ ) σ 2 = 0 \frac{\partial \ln y}{\partial \mu} = \sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} = 0 μlny=i=1nσ2(xiμ)=0
即: μ = 1 n ∑ i = 1 n ( x i ) \mu = \frac{1}{n}\sum_{i=1}^{n} (x_i) μ=n1i=1n(xi)

∂ ln ⁡ y ∂ σ = − n 1 σ + ∑ i = 1 n ( x i − μ ) 2 σ 3 = 0 \frac{\partial \ln y}{\partial \sigma} =-n\frac{1}{\sigma} +\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma ^ 3} = 0 σlny=nσ1+i=1nσ3(xiμ)2=0
即: σ 2 = ∑ i = 1 n ( x i − μ ) 2 n \sigma^2 = \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n} σ2=i=1nn(xiμ)2

  1. 先验估计:

y = p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 y = p(x_1,x_2,x_3,...,x_n;\theta_0) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0} e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} y=p(x1,x2,x3,...,xn;θ0)=2π σ1e2σ2(x1μ)22π σ1e2σ2(x2μ)2...2π σ1e2σ2(xnμ)22π σ01e2σ02(μ0μ)2

l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 − l n ( 2 π σ 0 ) − ( μ 0 − μ ) 2 2 σ 0 2 lny = ln p(x_1,x_2,x_3,...,x_n;\theta_0) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0}e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} )=\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} -ln(\sqrt{2 \pi} \sigma _0) -\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2} lny=lnp(x1,x2,x3,...,xn;θ0)=ln(2π σ1e2σ2(x1μ)22π σ1e2σ2(x2μ)2...2π σ1e2σ2(xnμ)22π σ01e2σ02(μ0μ)2)=nln(2π σ)i=1n2σ2(xiμ)2ln(2π σ0)2σ02(μ0μ)2

要求y的极限值(将 μ 和 σ \mu 和 \sigma μσ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:

∂ ln ⁡ y ∂ μ = ∑ i = 1 n ( x i − μ ) σ 2 + ( μ 0 − μ ) σ 0 2 = 0 \frac{\partial \ln y}{\partial \mu} = \sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} +\frac{(\mu_0- \mu)}{\sigma_0 ^ 2} = 0 μlny=i=1nσ2(xiμ)+σ02(μ0μ)=0

即:
∂ ln ⁡ y ∂ μ = 1 σ 2 ∑ i = 1 n x i − n μ σ 2 + μ 0 σ 0 2 − μ σ 0 2 = 0 \frac{\partial \ln y}{\partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^{n} x_i - \frac{n\mu}{\sigma^2}+ \frac{\mu_0}{\sigma_0 ^ 2} - \frac{\mu}{\sigma_0 ^ 2}= 0 μlny=σ21i=1nxiσ2nμ+σ02μ0σ02μ=0

1 σ 2 ∑ i = 1 n x i + μ 0 σ 0 2 = ( n σ 2 + 1 σ 0 2 ) μ \frac{1}{\sigma^2}\sum_{i=1}^{n} x_i + \frac{\mu_0}{\sigma_0 ^ 2} = ( \frac{n}{\sigma^2} +\frac{1}{\sigma_0 ^ 2} )\mu σ21i=1nxi+σ02μ0=(σ2n+σ021)μ

μ = 1 σ 2 ∑ i = 1 n x i + μ 0 σ 0 2 n σ 2 + 1 σ 0 2 \mu = \frac{ \frac{1}{\sigma^2}\sum_{i=1}^{n} x_i + \frac{\mu_0}{\sigma_0 ^ 2} }{\frac{n}{\sigma^2} +\frac{1}{\sigma_0 ^ 2} } μ=σ2n+σ021σ21i=1nxi+σ02μ0

这里要注意的是,贝叶斯估计在 θ 0 \theta_0 θ0处的先验概率的计算方式,此时要将 u 0 和 σ 0 当作先验参数 u_0和\sigma_0当作先验参数 u0σ0当作先验参数

相关文章:

密度估计公式

极大似然估计: y p ( x 1 , x 2 , x 3 , . . . , x n ) 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 y p(x_1,x_2,x_3,...,x_n) \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1…...

2023 ICPC 网络赛 第一场(补题:F)

7题罚时879, 队排235,校排79。 除了I题dp没注意空间限制第一发没有用滚动数组MLE,以及G题启发式合并脑抽用set当容器T一发,以及K没注意是平方的期望白wa4发这些应当避免的失误外,基本满意。剩下的题基本都是当时写不出…...

MySQL慢查询优化、日志收集定位排查、慢查询sql分析

MySQL慢查询日志收集、定位,慢查询分析、排查。 一 MySQL慢查询定位 1. 确定是否已开启慢查询日志 查看慢查询日志是否已经被开启: SHOW VARIABLES LIKE slow_query_log; 如果返回值是OFF,你需要开启它。 2. 开启慢查询日志 你可以临时在运…...

HZOJ-266:表达式计算

题目描述 ​ 给出一个表达式,其中运算符仅包含 ,-,*,/,^ 要求求出表达式的最终值。 ​ 数据可能会出现括号情况,还有可能出现多余括号情况,忽略多余括号,正常计算即可; ​ 数据保证不会出现大于 max long int 的数据&#xff1…...

JavaScript学习小结

变量声明:使用var关键字,变量没有类型,但值有类型(弱类型语言) 数据类型: ①number ②string(单引号,双引号都可以表示字符串) ③boolean ④Object类型 ⑤undefine…...

MySQL学习笔记13

DISTINCT数据去重: 案例:获取tb_student学生表学员年龄的分布情况。 mysql> select * from tb_student; ------------------------------------------------- | id | name | age | gender | address | --------------------------…...

怎么获取外网ip地址

在网络连接中,每个设备都被分配一个唯一的IP地址,用于标识和定位该设备。其中,内部或局域网IP地址是在局域网内使用的,而外网IP地址则是与公共互联网通信时所使用的地址。 获取外网IP地址对于许多人来说可能是一个常见的需求&…...

算法 只出现一次的两个数字-(哈希+异或)

牛客网: BM52 题目: 数组中仅2个数字出现1次,其余出现2次 思路: 出现2次的数字异或结果为0,另外两个不同的数字异或结果res不为0,异或结果的二进制位必与其中一个相同,求出二进制位为1的pos, 遍历数组,所有此位置为1…...

外卖霸王餐小程序、H5、公众号版外卖系统源码

最新外卖霸王餐小程序、H5、微信公众号版外卖系统源码、霸王餐美团、饿了么系统,粉丝裂变玩源码下载,外卖cps小程序项目,外卖红包cps带好友返利佣金分销系统程序、饿了么美团联盟源码,外卖cps带分销返利后端源码,基于L…...

amlogic 机顶盒关闭DLNA 后,手机还能搜到盒子

S905L3 带有投屏的功能,并通过 com.droidlogic.mediacenter.dlna.MediaCenterService 服务的启动和停止来开启和关闭DLNA功能,但是在测试中发现机顶盒关闭DLNA后,手机还能搜索到盒子。我在复测中发现关闭后有时很难很久搜索到盒子&#xff0c…...

@Autowire、@Recourse用啥?

在使用IDEA写Spring相关的项目的时候,在字段上使用Autowired注解时,总是会有一个波浪线提示:Field injection is not recommended. 这是为啥呢?今天就来一探究竟。 众所周知,在Spring里面有三种可选的注入方式&#xf…...

[linux] 过滤警告⚠️

如果你在Python脚本中输出和执行脚本文件时想要过滤掉警告信息,可以尝试以下方法: 使用warnings模块:导入warnings模块并设置warnings.filterwarnings("ignore"),这将会忽略所有的警告信息。在需要过滤警告的部分之前添…...

Linux必备操作系统命令大全

一、基础命令 pwd 命令 pwd命令用于显示当前所在的工作目录的全路径名称。该命令无需任何参数,只需在终端窗口中输入 pwd 命令即可使用。 cd 命令 cd命令用于更改当前工作目录。该命令需要一个参数:目标目录名称。例如,若要进入 Document…...

【rtp】VideoTimingExtension 扩展的解析和写入

VideoTimingExtension 扩展有13个字节,并非都是字符串类型 class VideoTimingExtension {public:using value_type = VideoSendTiming;static constexpr RTPExtensionType kId = kRtpExtensionVideoTiming;static constexpr uint8_t kValueSizeBytes = 13...

网络安全CTF比赛有哪些事?——《CTF那些事儿》告诉你

目录 前言 一、内容简介 二、读者对象 三、专家推荐 四、全书目录 前言 CTF比赛是快速提升网络安全实战技能的重要途径,已成为各个行业选拔网络安全人才的通用方法。但是,本书作者在从事CTF培训的过程中,发现存在几个突出的问题&#xff1…...

Winform直接与Wpf交互

Winform项目中,可以直接使用wpf中的自定义控件和窗体 测试环境: vistual studio 2017 window 10 一 winform直接使用wpf的自定义控件 步骤如下: 1 新建winfrom项目,名为WinFormDemo,默认有一个名为Form1的窗体…...

Uni-app 调用微信地图导航功能【有图】

前言 我们在使用uni-app时&#xff0c;有时候会遇到需要开发地图和导航的功能&#xff0c;这些方法其实微信小程序的API已经帮我们封装好了 详见&#xff1a;微信小程序开发文档 接下来我们就演示如何用uni-app来使用他们 使用 <template><view><button type…...

Golang slice 通过growslice调用nextslicecap计算扩容

先来看一段代码 code: e : []int64{1, 2, 3}fmt.Println("cap of e before:", cap(e))e append(e, 4, 5, 6, 7)fmt.Println("cap of e after:", cap(e))output:cap of e before: 3 cap of e after: 8 为什么容量是8&#xff1f; append了的4个元素&…...

HTTP 协商缓存 Last-Modified,If-Modified-Since

浏览器第一次跟服务器请求一个资源&#xff0c;服务器在返回这个资源的同时&#xff0c;在respone header加上Last-Modified属性&#xff08;表示这个资源在服务器上的最后修改时间&#xff09;&#xff1a; ----------------------------------------------------------------…...

零基础教程:Yolov5模型改进-添加13种注意力机制

1.准备工作 先给出13种注意力机制的下载地址&#xff1a; https://github.com/z1069614715/objectdetection_script 2.加入注意力机制 1.以添加SimAM注意力机制为例&#xff08;不需要接收通道数的注意力机制&#xff09; 1.在models文件下新建py文件&#xff0c;取名叫Sim…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...