当前位置: 首页 > news >正文

英码科技精彩亮相火爆的IOTE 2023,多面赋能AIoT产业发展!

9月20日至22日,在这金秋飒爽的季节,为期三天的IOTE 2023第二十届国际物联网展·深圳站在深圳国际会展中心盛大举行。英码科技精彩亮相本届展会,并在同期举办的AIoT视觉物联产业生态大会发表了主题演讲,与生态伙伴们共同探讨AIoT产业发展新生机。

IOTE国际物联网展是一个全面覆盖整个物联网产业链的重要展会,至今已有14年的举办历史。IOTE 2023以“IoT构建数字经济底座”为主题,聚焦IoT产业热门赛道,围绕泛安防、通信、云平台、人工智能、工业物联网、智慧城市等话题展开,将IoT技术引入实体经济领域,推进智慧城市、智慧工业、智慧医疗等多个领域的数智化发展,共同推动全球数字经济的繁荣与进步。

英码科技是行业领先的AIoT创新产品和解决方案服务商,荣幸受邀参加本届展会,现场展示了领先的AIoT产品,包括覆盖多层次算力的智能工作站(边缘计算盒子)、AI加速卡等;同时向大家展示自研的AI技术服务——“深元”0代码移植工具链和创新性的行业解决方案,赋能更多AIoT产业生态企业快速具备AI能力。

在英码科技展位上,现场的伙伴们集中了解到了基于多家国产主流平台算力产品的特点和对应的落地案例,同时深入了解英码科技在赋能项目落地过程中自主研发的0代码移植工具链,其“快速部署、简单易用、低成本”的特点令现场的伙伴们叹服,激起了大家浓厚的兴趣。

在同期举办的AIoT视觉物联产业生态大会上,英码科技市场总监李甘来先生受邀发表了《释放边缘智能潜力,让AIoT产业更“亮眼”》的主题演讲。大会上,李总从边缘智能的方向,分享了AI视觉市场需求的变化以及如何把AIoT市场蛋糕做大的新思路;在演讲中他提到,当前市场标品竞争激烈,大量长尾需求无人问津,而目前AI场景化应用落地的三大难点在于:算法场景碎片化、硬件设备无法标准化、AI应用落地难平台化,同时传统项目交付模式“过程过于复杂、周期长、成本高”等问题严重制约了AI与千行百业的快速融合;因此,快速、低成本地结合业务需求生成算法,并结合国产AI边缘计算算力设备进行移植优化,是解决AI算力产品国产化,并推动AI产业发展的一个突破口。

英码科技基于这样的市场痛点和需求打造了“深元”AI引擎,以高、中、低多层次算力硬件为基础,搭载自研的0代码移植工具链,在不触碰客户模型文件的前提下,实现算法从GPU到XPU的一键移植,最快1天实现算法适配,快、易、省赋能长尾AI算法在AI视觉产业的广泛应用;目前已广泛应用于智慧城市、智慧应急、智慧交通、智慧校园、智慧金融、智慧园区等领域。英码科技“深元”AI引擎为客户提供算法到算力的一体化快速生产模式,实实在在赋能企业快速具备AI能力,实现降本增效。

本次生态大会重磅发布了《2023 边缘计算产业市场调研报告》,英码科技作为联合发布单位之一,为报告贡献了不少市场信息与成功案例。报告对边缘计算产业的发展做了详尽的梳理,同时对边缘计算产业未来发展趋势做出预测。

本届国际物联网展是英码科技与行业同仁和各界专业人士深入交流合作的良好契机,也让大家深入了解英码科技的产品与技术实力,英码科技将不断精进各项实力,继续为行业带来更多创新的AIoT产品、完善的AI技术服务和优秀的行业解决方案,释放边缘智能潜力,让AIoT产业更“亮眼”!

相关文章:

英码科技精彩亮相火爆的IOTE 2023,多面赋能AIoT产业发展!

9月20日至22日,在这金秋飒爽的季节,为期三天的IOTE 2023第二十届国际物联网展深圳站在深圳国际会展中心盛大举行。英码科技精彩亮相本届展会,并在同期举办的AIoT视觉物联产业生态大会发表了主题演讲,与生态伙伴们共同探讨AIoT产业…...

400G QSFP-DD FR4 与 400G QSFP-DD FR8光模块:哪个更适合您的网络需求?

QSFP-DD 光模块随着光通信市场规模的不断增长已成为400G市场中客户需求量最高的产品。其中400G QSFP-DD FR4和400G QSFP-DD FR8光模块都是针对波分中距离传输(2km)的解决方案,它们之间有什么不同?应该如何选择应用?飞速…...

【Android】Kotlin 中的 apply、let、with、also、run 到底有啥区别?

一、图示 二、apply apply 函数接收一个对象并返回该对象本身。它允许您在对象上执行一些操作&#xff0c;同时仍然返回原始对象。 这个函数的语法为&#xff1a; fun <T> T.apply(block: T.() -> Unit): T 其中&#xff0c;T 是对象的类型&#xff0c;block 是一…...

设计模式——职责链模式

职责链模式 职责链模式职责链模式解决什么问题&#xff1f;职责链模式实现 职责链模式 使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象练成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;知道有一个对象处理它为止 …...

小程序自定义tabbar,中间凸起

微信小程序自带tabbar&#xff0c;但无法实现中间按钮凸起样式和功能&#xff0c;因此按照设计重新自定义一个tabbar 1、创建tabbar文件&#xff0c;与pages同级创建一个文件夹&#xff0c;custom-tab-bar,里面按照设计图将底部tabbar样式编写 <view class"tab-bar&q…...

数据结构-顺序栈C++示例

栈(stack)是限定仅在表尾进行插入或删除操作的线性表。 对栈来说&#xff0c;表尾端称为栈顶(top)&#xff0c; 表头端称为栈底(bottom)&#xff0c;不含元素的空表称为空栈。 假设栈 S ( a 1 , a 2 , a 3 , ⋯ , a n ) S(a_1,a_2,a_3,\cdots,a_n) S(a1​,a2​,a3​,⋯,an​…...

若依cloud -【 100 ~ 103 】

100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用&#xff0c;每个应用都部署在单独的一台机器里边&#xff0c;应用对应的日志的也单独存…...

可转债实战与案例分析——成功的和失败的可转债投资案例、教训与经验分享

实战与案例分析——投资案例研究 股票量化程序化自动交易接口 一、成功的可转债投资案例 成功的可转债投资案例提供了有价值的经验教训&#xff0c;以下是一个典型的成功案例&#xff1a; 案例&#xff1a;投资者B的成功可转债投资 投资者B是一位懂得风险管理的投资者&#…...

@NotNull注解不生效,全局异常处理

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId><version>3.1.2</version> </dependency> 2&#xff1a;实体类 实体类属性加上NotNull注解…...

【办公自动化】使用Python一键往Word文档的表格中填写数据(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

OpenHarmony应用核心技术理念与需求机遇简析

一、核心技术理念 图片来源&#xff1a;OpenHarmony官方网站 二、需求机遇简析 新的万物互联智能世界代表着新规则、新赛道、新切入点、新财富机会;各WEB网站、客户端( 苹果APP、安卓APK)、微信小程序等上的组织、企业、商户等;OpenHarmony既是一次机遇、同时又是一次大的挑战&…...

让Pegasus天马座开发板实现超声波测距

在完成《让Pegasus天马座开发板用上OLED屏》后&#xff0c;我觉得可以把超声波测距功能也在Pegasus天马座开发板上实现。于是在箱子里找到了&#xff0c;Grove - Ultrasonic Ranger 这一超声波测传感器。 官方地址: https://wiki.seeedstudio.com/Grove-Ultrasonic_Ranger 超声…...

C++11 多线程学习

C11学习 一、多线程 1、模板线程是以右值传递的 template <class Fn, class... Args> explicit thread(Fn&& fn, Args&&... args)则需要使用到std::ref和std::cref很好地解决了这个问题&#xff0c;std::ref 可以包装按引用传递的值。 std::cref 可以…...

数学公式测试

MVP变换 MVP变换用来描述视图变换的任务&#xff0c;即将虚拟世界中的三维物体映射&#xff08;变换&#xff09;到二维坐标中。 MVP变换分为三步&#xff1a; 模型变换(model tranformation)&#xff1a;将模型空间转换到世界空间&#xff08;找个好的地方&#xff0c;把所…...

机器学习——SVM(支持向量机)

0、前言&#xff1a; SVM应用&#xff1a;主要针对小样本数据进行学习、分类和回归&#xff08;预测&#xff09;&#xff0c;能解决神经网络不能解决的过学习问题&#xff0c;有很好的泛化能力。&#xff08;注意&#xff1a;SVM算法的数学原理涉及知识点比较多&#xff0c;所…...

【李沐深度学习笔记】基础优化方法

课程地址和说明 基础优化方法p2 本系列文章是我学习李沐老师深度学习系列课程的学习笔记&#xff0c;可能会对李沐老师上课没讲到的进行补充。 基础优化方法 在讲具体的线性回归实现之前&#xff0c;要先讲一下基础的优化模型的方法 梯度下降 当模型没有显示解&#xff08…...

tmux 配置vim风格按键,支持gbk编码

vim修改~/.tmux.conf文件&#xff0c;没有则新增&#xff0c;添加如下内容。默认前缀更改为Ctrla。强烈建议更换Caps lock键位与Ctrl键位&#xff0c;用过的都说好&#xff0c;换过就回不来了。 unbind C-b set -g prefix C-a bind a send-prefixset -sg escape-time 1bind r …...

Python —— excel文件操作(超详细)

背景 很多公司还是用excel去管理测试用例的&#xff0c;所以为了减少重复繁琐的导出导出工作&#xff0c;学会如何用代码操作excel表格很实用~ 1、读取excel文件基本步骤 1、操作excel的一些库 1、xlrd&#xff1a;读取库&#xff0c;xlwt&#xff1a;写入&#xff0c;现在…...

什么是AI问答机器人?它的应用场景有哪些?

近年来&#xff0c;由于技术的进步和对个性化客户体验的需求不断增长&#xff0c;AI问答机器人也是获得了巨大的关注。AI问答机器人&#xff0c;也被称为AI聊天机器人&#xff0c;是一种旨在模拟人类对话并通过基于文本或语音的界面与用户交互的计算机程序。其能够自动执行各种…...

静态文件

静态文件 静态文件配置 - settings.py中 1&#xff0c;配置静态文件的访问路径【该配置默认存在】 通过哪个url地址找静态文件 STATIC URL‘/static/’ 说明 指定访问静态文件时是需要通过/static/xxx或http://127.0.0.1:8000/static/xxx [xxx表示具体的静态资源位置] 模…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...