数据结构-顺序栈C++示例
栈(stack)是限定仅在表尾进行插入或删除操作的线性表。
对栈来说,表尾端称为栈顶(top), 表头端称为栈底(bottom),不含元素的空表称为空栈。
假设栈 S = ( a 1 , a 2 , a 3 , ⋯ , a n ) S=(a_1,a_2,a_3,\cdots,a_n) S=(a1,a2,a3,⋯,an) , 则称 a 1 a_1 a1为栈底元素, a n a_n an为栈顶元素,插入元素到栈顶(即表尾)的操作称为入栈, 从栈顶(即表尾)删除最后一个元素的操作称为出栈。栈元素的修改是按后进先出的原则进行的,因此栈又称为后进先出(Last In First Out, LIFO)的线性表。
由于栈固有的后进先出特性,使得栈称为程序设计中的有用工具,另外,如果问题求解的过程具有“后进先出”的天然特性的话,则求解的算法中也需要利用“栈”, 如:
- 数制转换
- 表达式求值
- 括号匹配的检验
- 八皇后问题
- 行编辑程序
- 函数调用
- 迷宫求解
- 递归调用的实现
抽象数据类型定义
ADT Stack{ 数据对象: D = { a i ∣ a i ∈ E l e m S e t , i = 1 , 2 , 3 , ⋯ , n , n ≥ 0 } D=\{{a_i}| a_i \in ElemSet, i=1,2,3,\cdots,n, n \geq 0\} D={ai∣ai∈ElemSet,i=1,2,3,⋯,n,n≥0}
数据关系: R = { < a i − 1 , a i > ∣ a i − 1 , a i ∈ D , i = 1 , 2 , 3 , ⋯ , n } R=\{<a_{i-1}, a_i> | a_{i-1},a_i \in D, i = 1,2,3,\cdots,n\} R={<ai−1,ai>∣ai−1,ai∈D,i=1,2,3,⋯,n}
约定 a n a_n an 端为栈顶, a 1 a_1 a1 端为栈底。
基本操作:
InitStack(&S) 操作结果:构造一个空栈 S S S
DestroyStack(&S) 初始条件:栈 S S S已经存在
操作结果:栈 S S S被销毁
ClearStack(&S) 初始条件:栈 S S S已经存在
操作结果:将栈 S S S 清空
StackEmpty(&S) 初始条件:栈 S S S已经存在
操作结果:若栈 S S S 为空栈,则返回
true, 否则返回false
StackLength(&S) 初始条件:栈 S S S已经存在
操作结果:返回栈 S S S 的元素个数,即栈的长度
GetTop(&S) 初始条件:栈 S S S已经存在且非空
操作结果:返回栈 S S S 的栈顶元素
Push(&S,e) 初始条件:栈 S S S已经存在
操作结果:插入元素
e为新的栈顶元素
Pop(&S,e) 初始条件:栈 S S S已经存在且非空
操作结果:删除
S的栈顶元素,并且用e返回其值
StackTraverse(&S,e) 初始条件:栈 S S S已经存在且非空
操作结果:从栈底到栈顶一次对
S的每个数据元素进行访问
}ADT Stack
顺序栈
顺序栈是指利用顺序存储结构实现的栈。
初始化
bool InitStack(SqStack &S)
{S.base = new SElemType[MaxSize];if (!S.base){std::cerr << "内存分配失败" << std::endl;return false;}S.front = S.base;S.stacksize = MaxSize;return true;
}
销毁
bool DestroyStack(SqStack &S)
{if (S.base){delete[] S.base;S.stacksize = 0;S.base = S.front = nullptr;return true;}return false;
}
清空
bool ClearStack(SqStack &S)
{if (S.base){S.front = S.base;return true;}return false;
}
是否为空栈
bool StackEmpty(const SqStack &S)
{return S.base == S.front;
}
栈长度
int StackLength(const SqStack &S)
{return S.front - S.base;
}
入栈
bool Push(SqStack &S, const SElemType &e)
{if (S.front - S.base == S.stacksize){std::cerr << "顺序栈已满,无法插入新元素" << std::endl;return false;}*(S.front) = e;S.front++;return true;
}
出栈
bool Pop(SqStack &S, SElemType &e)
{if (StackEmpty(S)){std::cerr << "空栈无法取值" << std::endl;return false;}S.front--;e = *(S.front);return true;
}
获取栈顶元素
SElemType GetTop(const SqStack &S)
{if (StackEmpty(S)){std::cerr << "空栈无法取值" << std::endl;return false;}return *(S.front - 1);
}
遍历栈元素
void StackTraverse(const SqStack &S)
{for (int i = 0; i < S.front - S.base; i++){std::cout << "第 " << i + 1 << " 个元素为: " << S.base[i] << std::endl;}
}
头文件
#pragma once
#include <iostream>const int MaxSize = 100;
typedef int SElemType;
typedef struct _SqStack
{SElemType *base; // 栈底SElemType *front; // 栈顶int stacksize; // 栈可用的最大容量
} SqStack;bool InitStack(SqStack &S);
bool DestroyStack(SqStack &S);
bool ClearStack(SqStack &S);
bool StackEmpty(const SqStack &S);
int StackLength(const SqStack &S);
bool Push(SqStack &S, const SElemType &e);
bool Pop(SqStack &S, SElemType &e);
void StackTraverse(const SqStack &S);
SElemType GetTop(const SqStack &S);
测试文件
#include "include/stack.h"int main()
{SqStack S;InitStack(S);Push(S, 1);Push(S, 2);Push(S, 3);Push(S, 4);StackTraverse(S);SElemType top = GetTop(S);std::cout << "栈顶元素为: " << top << std::endl;int stack_len = StackLength(S);std::cout << "栈长度: " << stack_len << std::endl;Pop(S, top);StackTraverse(S);std::cout << "++++++++++++++" << std::endl;ClearStack(S);StackTraverse(S);DestroyStack(S);return 0;
}
链栈
链栈是指采用链式存储结构实现的栈。通常使用单链表来表示,由于栈的主要操作是在栈顶插入和删除,为了方便,这里将链表的头结点作为栈顶,且不需要头结点。
初始化
bool InitStack(LinkStack &S)
{S = nullptr;return true;
}
销毁
bool DestroyStack(LinkStack &S)
{while (S){StackNode *tmp = S->next;S = S->next;delete tmp;}return true;
}
清空
bool ClearStack(LinkStack &S)
{DestroyStack(S->next);S = nullptr;return true;
}
是否为空栈
bool StackEmpty(const LinkStack &S)
{return !S;
}
栈长度
int StackLength(const LinkStack &S)
{int len = 0;StackNode *tmp = S;while (tmp){len++;tmp = tmp->next;}return len;
}
入栈
bool Push(LinkStack &S, const ElemType &e)
{StackNode *p = new StackNode;p->data = e;p->next = S;S = p;return true;
}
出栈
bool Pop(LinkStack &S, ElemType &e)
{if (S){e = S->data;StackNode *tmp = S;S = S->next;delete tmp;return true;}return false;
}
获取栈顶元素
ElemType GetTop(const LinkStack &S)
{if (S)return S->data;else{return 0;}
}
遍历栈元素
void StackTraverse(const LinkStack &S)
{StackNode *tmp = S;int i = 0;while (tmp){i++;std::cout << "第 " << i << " 个元素为: " << tmp->data << std::endl;tmp = tmp->next;}
}
文章参考 严蔚敏老师《数据结构 C语言版 第2版》和青岛大学王卓数据结构视频课
相关文章:
数据结构-顺序栈C++示例
栈(stack)是限定仅在表尾进行插入或删除操作的线性表。 对栈来说,表尾端称为栈顶(top), 表头端称为栈底(bottom),不含元素的空表称为空栈。 假设栈 S ( a 1 , a 2 , a 3 , ⋯ , a n ) S(a_1,a_2,a_3,\cdots,a_n) S(a1,a2,a3,⋯,an…...
若依cloud -【 100 ~ 103 】
100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用,每个应用都部署在单独的一台机器里边,应用对应的日志的也单独存…...
可转债实战与案例分析——成功的和失败的可转债投资案例、教训与经验分享
实战与案例分析——投资案例研究 股票量化程序化自动交易接口 一、成功的可转债投资案例 成功的可转债投资案例提供了有价值的经验教训,以下是一个典型的成功案例: 案例:投资者B的成功可转债投资 投资者B是一位懂得风险管理的投资者&#…...
@NotNull注解不生效,全局异常处理
1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId><version>3.1.2</version> </dependency> 2:实体类 实体类属性加上NotNull注解…...
【办公自动化】使用Python一键往Word文档的表格中填写数据(文末送书)
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...
OpenHarmony应用核心技术理念与需求机遇简析
一、核心技术理念 图片来源:OpenHarmony官方网站 二、需求机遇简析 新的万物互联智能世界代表着新规则、新赛道、新切入点、新财富机会;各WEB网站、客户端( 苹果APP、安卓APK)、微信小程序等上的组织、企业、商户等;OpenHarmony既是一次机遇、同时又是一次大的挑战&…...
让Pegasus天马座开发板实现超声波测距
在完成《让Pegasus天马座开发板用上OLED屏》后,我觉得可以把超声波测距功能也在Pegasus天马座开发板上实现。于是在箱子里找到了,Grove - Ultrasonic Ranger 这一超声波测传感器。 官方地址: https://wiki.seeedstudio.com/Grove-Ultrasonic_Ranger 超声…...
C++11 多线程学习
C11学习 一、多线程 1、模板线程是以右值传递的 template <class Fn, class... Args> explicit thread(Fn&& fn, Args&&... args)则需要使用到std::ref和std::cref很好地解决了这个问题,std::ref 可以包装按引用传递的值。 std::cref 可以…...
数学公式测试
MVP变换 MVP变换用来描述视图变换的任务,即将虚拟世界中的三维物体映射(变换)到二维坐标中。 MVP变换分为三步: 模型变换(model tranformation):将模型空间转换到世界空间(找个好的地方,把所…...
机器学习——SVM(支持向量机)
0、前言: SVM应用:主要针对小样本数据进行学习、分类和回归(预测),能解决神经网络不能解决的过学习问题,有很好的泛化能力。(注意:SVM算法的数学原理涉及知识点比较多,所…...
【李沐深度学习笔记】基础优化方法
课程地址和说明 基础优化方法p2 本系列文章是我学习李沐老师深度学习系列课程的学习笔记,可能会对李沐老师上课没讲到的进行补充。 基础优化方法 在讲具体的线性回归实现之前,要先讲一下基础的优化模型的方法 梯度下降 当模型没有显示解(…...
tmux 配置vim风格按键,支持gbk编码
vim修改~/.tmux.conf文件,没有则新增,添加如下内容。默认前缀更改为Ctrla。强烈建议更换Caps lock键位与Ctrl键位,用过的都说好,换过就回不来了。 unbind C-b set -g prefix C-a bind a send-prefixset -sg escape-time 1bind r …...
Python —— excel文件操作(超详细)
背景 很多公司还是用excel去管理测试用例的,所以为了减少重复繁琐的导出导出工作,学会如何用代码操作excel表格很实用~ 1、读取excel文件基本步骤 1、操作excel的一些库 1、xlrd:读取库,xlwt:写入,现在…...
什么是AI问答机器人?它的应用场景有哪些?
近年来,由于技术的进步和对个性化客户体验的需求不断增长,AI问答机器人也是获得了巨大的关注。AI问答机器人,也被称为AI聊天机器人,是一种旨在模拟人类对话并通过基于文本或语音的界面与用户交互的计算机程序。其能够自动执行各种…...
静态文件
静态文件 静态文件配置 - settings.py中 1,配置静态文件的访问路径【该配置默认存在】 通过哪个url地址找静态文件 STATIC URL‘/static/’ 说明 指定访问静态文件时是需要通过/static/xxx或http://127.0.0.1:8000/static/xxx [xxx表示具体的静态资源位置] 模…...
Centos7 自部署中间件开机启动,以及java应用开机启动方法
一、zookeeper cd /etc/rc.d/init.d/ touch zookeeper chmod x zookeeper vi zookeeper#以下为内容,自行修改 路径#!/bin/bash ##chkconfig:2345 10 90#description:service zookeeper #修改为自己的目录 export ZOO_LOG_DIR/data/apache-zookeeper-3.7.0/logs…...
密度估计公式
极大似然估计: y p ( x 1 , x 2 , x 3 , . . . , x n ) 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 y p(x_1,x_2,x_3,...,x_n) \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1…...
2023 ICPC 网络赛 第一场(补题:F)
7题罚时879, 队排235,校排79。 除了I题dp没注意空间限制第一发没有用滚动数组MLE,以及G题启发式合并脑抽用set当容器T一发,以及K没注意是平方的期望白wa4发这些应当避免的失误外,基本满意。剩下的题基本都是当时写不出…...
MySQL慢查询优化、日志收集定位排查、慢查询sql分析
MySQL慢查询日志收集、定位,慢查询分析、排查。 一 MySQL慢查询定位 1. 确定是否已开启慢查询日志 查看慢查询日志是否已经被开启: SHOW VARIABLES LIKE slow_query_log; 如果返回值是OFF,你需要开启它。 2. 开启慢查询日志 你可以临时在运…...
HZOJ-266:表达式计算
题目描述 给出一个表达式,其中运算符仅包含 ,-,*,/,^ 要求求出表达式的最终值。 数据可能会出现括号情况,还有可能出现多余括号情况,忽略多余括号,正常计算即可; 数据保证不会出现大于 max long int 的数据࿱…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
