【学习笔记】CF1103D Professional layer
首先分析不出啥性质,所以肯定是暴力优化😅
常见的暴力优化手段有均摊,剪枝,数据范围分治(points),答案值域分析之类的。
比较经典的题目是 CF1870E Another MEX Problem,可以用剪枝和分析值域两种方法通过
考虑剪枝,这个大佬 是剪枝高手,大家快去膜拜他🤩
首先,设 g = gcd 1 ≤ i ≤ n a i g=\gcd_{1\le i\le n} a_i g=gcd1≤i≤nai,然后对每个 a i a_i ai只保留 g g g中的质因数。发现此时本质不同的 a i a_i ai比较少,并且本质不同的质因数也比较少,考虑从这两方面入手
记质因数数目为 M M M, a i a_i ai的状态数为 m m m,显然 M ≤ 11 M\le 11 M≤11, m m m不太清楚,但是可以感性发现不会很大
发现对于相同的 a i a_i ai,只需要保留前 M M M个较小的 e i e_i ei即可,后面的都用不上。
同时注意到被操作的数不会超过 M M M,因此 D P DP DP复杂度为 O ( 3 M m M 2 ) O(3^MmM^2) O(3MmM2)
每次只加入一个 a i a_i ai太浪费了,可以考虑一次将相同的 a i a_i ai一起加进去,然后记录需要选择的 a i a_i ai数目的最小值。这样组外 D P DP DP的复杂度为 O ( 3 M m M ) O(3^MmM) O(3MmM),组内 D P DP DP的复杂度为 O ( 3 M m ) O(3^Mm) O(3Mm)。
当 M M M取遍所有值时,最大计算量在 1 0 8 10^8 108左右,可以通过。
#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define ll long long
#define db double
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const int N=1e6+5;
int n,cnt;
ll K,a[N],nums[N],e[N],g,res;
int M;
ll prime[15];
vector<ll>v[15005];
ll gcd(ll x,ll y){return y==0?x:gcd(y,x%y);
}
int get(ll x){return lower_bound(nums+1,nums+1+cnt,x)-nums;
}
void dfs(int u,ll mul){if(u==M){nums[++cnt]=mul;return;}while(mul<=1000000000000/prime[u]){mul*=prime[u],dfs(u+1,mul);}
}
ll now[1<<11][12],nxt[1<<11][12],sm[12];
int dp[1<<11],h[1<<11];
ll b[15];
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>n>>K;for(int i=1;i<=n;i++)cin>>a[i],g=gcd(g,a[i]);for(int i=1;i<=n;i++)cin>>e[i];ll tmp=g;for(int i=2;i<=tmp/i;i++){if(tmp%i==0){prime[M++]=i;while(tmp%i==0)tmp/=i;}}if(tmp>1)prime[M++]=tmp;dfs(0,1),sort(nums+1,nums+1+cnt);for(int i=1;i<=n;i++){ll tmp2=1;for(int j=0;j<M;j++){while(a[i]%prime[j]==0)a[i]/=prime[j],tmp2*=prime[j];}v[get(tmp2)].pb(e[i]);}memset(now,0x3f,sizeof now),now[0][0]=0;for(int i=1;i<=cnt;i++){if(v[i].size()==0)continue;sort(v[i].begin(),v[i].end());if(v[i].size()>M)v[i].resize(M);for(int j=0;j<v[i].size();j++)sm[j+1]=sm[j]+v[i][j];ll tmp=nums[i];for(int j=0;j<M;j++){b[j]=1;while(tmp%prime[j]==0)b[j]*=prime[j],tmp/=prime[j];}for(int j=0;j<1<<M;j++){for(int k=0;k<=M;k++){nxt[j][k]=now[j][k];}}for(int j=1;j<1<<M;j++){h[j]=0,dp[j]=114514;ll mul=1;for(int k=0;k<M;k++){if(j>>k&1)mul*=b[k];}if(mul<=K)h[j]=1;for(int k=j;k;k=(k-1)&j){if(h[k])dp[j]=min(dp[j],dp[j-k]+1);}if(dp[j]<=v[i].size()){int s=(1<<M)-1-j;for(int k=s;;k=(k-1)&s){for(int l=0;l<=M;l++){if(now[k][l]!=inf){nxt[k+j][l+dp[j]]=min(nxt[k+j][l+dp[j]],now[k][l]+sm[dp[j]]);}}if(k==0)break;}}}for(int j=0;j<1<<M;j++){for(int k=0;k<=M;k++){now[j][k]=nxt[j][k];}}}ll res=inf;for(int i=0;i<=M;i++)if(now[(1<<M)-1][i]!=inf)res=min(res,now[(1<<M)-1][i]*i);cout<<(res==inf?-1:res);
}
相关文章:
【学习笔记】CF1103D Professional layer
首先分析不出啥性质,所以肯定是暴力优化😅 常见的暴力优化手段有均摊,剪枝,数据范围分治(points),答案值域分析之类的。 比较经典的题目是 CF1870E Another MEX Problem,可以用剪枝…...
vue之Pinia
定义 Store | Pinia 开发文档 1.什么是Pinaia Pinia 是 Vue 的专属状态管理库,它允许你跨组件或页面共享状态。 2.理解Pinaia核心概念 定义Store 在深入研究核心概念之前,我们得知道 Store 是用 defineStore() 定义的,它的第一个参数要求是一…...

antd-vue 级联选择器默认值不生效解决方案
一、业务场景: 最近在使用Vue框架和antd-vue组件库的时候,发现在做编辑回显时** 级联选择器** 组件的默认值不生效。为了大家后面遇到和我一样的问题,给大家分享一下 二、bug信息: 三、问题原因: 确定不了唯一的值&a…...

分享53个Python源码源代码总有一个是你想要的
分享53个Python源码源代码总有一个是你想要的 链接:https://pan.baidu.com/s/1ew3w2_DXlSBrK7Mybx3Ttg?pwd8888 提取码:8888 项目名称 100-Python ControlXiaomiDevices DRF-ADMIN 后台管理系统 FishC-Python3小甲鱼 Flask框架的api项目脚手架 …...

【每日一题】658. 找到 K 个最接近的元素
658. 找到 K 个最接近的元素 - 力扣(LeetCode) 给定一个 排序好 的数组 arr ,两个整数 k 和 x ,从数组中找到最靠近 x(两数之差最小)的 k 个数。返回的结果必须要是按升序排好的。 整数 a 比整数 b 更接近 …...
并发任务队列(字节青训测试题)
需求描述 封装一个并发任务队列类,用于对一些异步任务按指定的并发数量进行并发执行。 /*** 延迟函数* param {number} time - 延迟时间* return {Promise} delayFn - 延迟函数(异步封装)*/ function timeout(time) {return new Promise((resolve) > {setTimeo…...

Ubuntu 安装Nacos
1、官网下载最新版nacos https://github.com/alibaba/nacos/releases 本人环境JDK8,Maven3.6.3,启动Nacos2.2.1启动失败,故切换到2.1.0启动成功 2、放到服务器目录下,我的在/home/xxx/apps下 3、解压 $ tar -zxvf nacos-serve…...
CSS 小球随着椭圆移动
html代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><…...

【李沐深度学习笔记】线性代数
课程地址和说明 线性代数p1 本系列文章是我学习李沐老师深度学习系列课程的学习笔记,可能会对李沐老师上课没讲到的进行补充。 线性代数 标量 标量(scalar),亦称“无向量”。有些物理量,只具有数值大小,…...

vuejs - - - - - 递归组件的实现
递归组件的实现 1. 需求描述:2. 效果图:3. 代码3.1 封装组件代码3.2 父组件使用 1. 需求描述: 点击添加行,增加一级目录结构当类型为object or array时,点击右侧➕,增加子集点击右侧🚮&#x…...

精准对接促合作:飞讯受邀参加市工信局举办的企业供需对接会
2023年9月21日,由惠州市工业和信息化局主办的惠州市工业软件企业与制造业企业供需对接会成功举办,对接会旨在促进本地工业软件企业与制造业企业的紧密合作,推动数字化转型的深入发展。此次会议在市工业和信息化局16楼会议室举行,会…...
数学建模之遗传算法
文章目录 前言遗传算法算法思想生物的表示初始种群的生成下一代种群的产生适应度函数轮盘赌交配变异混合产生新种群 停止迭代的条件遗传算法在01背包中的应用01背包问题介绍01背包的其它解法01背包的遗传算法解法生物的表示初始种群的生成下一代种群的产生适应度函数轮盘赌交配…...
ISO9001认证常见的不符合项
今天,整理了一些关于ISO9001质量管理体系审核最常见的不合格项,以供大家参考。 一、质量管理体系 1、质量手册(标准条款4.2.2) (1)各部门执行的文件与手册的规定不一致。 (2)质量…...

crypto:看我回旋踢
题目 下载压缩包后解压可得到提示文本 经过观察,synt{}这个提示与flag{}形式很像 由题目名中的回旋可以推测为凯撒密码,由凯撒密码的定义可知,需要先推出移位数,s->f数13次,因此移位数为13,解码可得...

Springcloud实战之自研分布式id生成器
一,背景 日常开发中,我们需要对系统中的各种数据使用 ID 唯一表示,比如用户 ID 对应且仅对应一个人,商品 ID 对应且仅对应一件商品,订单 ID 对应且仅对应 一个订单。我们现实生活中也有各种 ID ,比如身…...

java 企业工程管理系统软件源码 自主研发 工程行业适用
工程项目管理软件(工程项目管理系统)对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营,全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&am…...

Spring Cloud Alibaba Nacos 2.2.3 (4) - 本地源码编译 调试
下载nacos nacos在GitHub上有下载地址:https://github.com/alibaba/nacos/releases,可以选择任意版本下载。 我下载的是2.2.3 版本 导入idea mvn 安装包 1,切换到Terminal ,并且使用command prompt模式 2,执行 mvn -Prelease…...

WKB近似
WKB方法用于研究一种特定类型的微分方程的全局性质 很有用这种特定的微分方程形如: 经过一些不是特别复杂的推导,我们可以得到他的WKB近似解。 该近似解的选择取决于函数和参数的性质同时,我们默认函数的定义域为当恒大于零,时: 当…...

LeetCode算法二叉树—108. 将有序数组转换为二叉搜索树
目录 108. 将有序数组转换为二叉搜索树 代码: 运行结果: 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不…...
如何设置 Git 短命令
设置 Git 短命令 对喜欢敲命令而不用图形化工具的爱好者来说,设置短命令可以很好的提高效率。下面介绍两种设置短命令的方式。 方式一 git config --global alias.ps push方式二 打开全局配置文件 vim ~/.gitconfig写入内容 [alias] co checkoutps pushpl p…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...