当前位置: 首页 > news >正文

机器学习线性回归学习总结笔记

线性回归模板:

1)获取数据:

2)划分数据集:

一般使用:train_test_split()

划分数据集的包from sklearn.model_selection import train_test_split

3)标准化处理

StandardScaler()

引包:from sklearn.preprocessing import StandardScaler

  • fit(X):计算输入数据集 X 的均值和标准差。这些统计量将用于后续的数据转换。

  • transform(X):对输入数据集 X 进行标准化处理,即将 X 缩放到均值为 0、标准差为 1 的分布。

  • fit_transform(X):先计算 X 的均值和标准差,然后对 X 进行标准化处理。

  • inverse_transform(X):将经过标准化处理的数据集 X 还原回原始数据空间,即逆转标准化操作。

代码示例:

transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)

4)选择预估器

引包:from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge.......

  1. LinearRegression:实现了普通最小二乘线性回归模型。它适用于特征与目标之间的线性关系,并且假设模型的误差服从正态分布。

  2. SGDRegressor:使用随机梯度下降算法实现的线性回归模型。相比于 LinearRegressionSGDRegressor 对大规模数据集更加高效。

  3. Ridge:通过添加 L2 正则化项来改进线性回归模型。正则化有助于控制模型的复杂度,减轻过拟合问题。

  4. lasso: 通过添加 L1 正则化项来改进线性回归模型。
    。。。

5)得出模型

权重系数:coef_

偏置:intercept_

6)模型评估

使用mean_squared_error()函数计算均方误差:

引包:from sklearn.metrics import mean_squared_error

代码示例:

y_predict=estimatar.predict(x_test)
print('预测值',y_predict)
error=mean_squared_error(y_test,y_predict)
print('岭回归的均方误差:',error)

7)可视化操作

使用matplotlib

引包:

import matplotlib.pyplot as plt

代码示例:

fig=plt.figure()
ax1=fig.add_subplot(221)
plt.scatter(y_test,y_predict,s=50,c='r',marker='o')
ax1.set_xlabel('y_test',labelpad=10,color='blue')
ax1.set_ylabel('y_predict',color='blue')
ax1.set_title('ax1',color='blue',size=30)y_chazhi=np.array(y_predict-y_test)
ax2=fig.add_subplot(222)
plt.scatter(y_test,y_chazhi,s=50,c='y',marker='o')
ax2.set_xlabel('y_test',labelpad=10,color='blue')
ax2.set_ylabel('y_chazhi',color='blue')
ax2.set_title('ax2',color='blue',size=30)# 特征名和权重系数的bar图
ax3=fig.add_subplot(223)
name_diab=diab.feature_names
y=estimatar.coef_
plt.bar(name_diab,y)
ax3.set_xlabel('name_diab',labelpad=10,color='blue')
ax3.set_ylabel('estimatar.coef_',color='blue')
ax3.set_title('ax3',color='blue',size=30,alpha=0.5)plt.show()

相关文章:

机器学习线性回归学习总结笔记

线性回归模板: 1)获取数据: 2)划分数据集: 一般使用:train_test_split() 划分数据集的包from sklearn.model_selection import train_test_split 3)标准化处理 StandardScaler…...

火狐连接错误代码SEC_ERROR_UNKNOWN_ISSUER

最近开发的实验启动功能,测试人员用火狐浏览进行测试,一直报错 错误代码SEC_ERROR_UNKNOWN_ISSUER 在网上搜索很多文章,都没有解决我的问题,最后自己花时间研究了下,灵感来源于项目中,就类似于白名单的功能…...

react 网页/app复制分享链接到剪切板,分享到国外各大社交平台,通过WhatsApp方式分享以及SMS短信方式分享链接内容

1.需求 最近在做一个国际网站app,需要把app中某个页面的图文链接分享到国外各大社交平台上(facebook,whatapp,telegram,twitter等),以及通过WhatApp聊天方式分享,和SMS短信方式分享链接内容,该怎么做呢?图示如下: 分享到国外各大社交平台&am…...

用智能文字识别技术赋能古彝文数字化之路

目录 1、前言 2、对古彝文古籍的保护迫在眉睫 3、古彝文识别的难点问题 4、古彝文文字识别的关键技术 4.1、智能高清滤镜技术 4.2、图像矫正 4.3、图像增强 4.4、版面还原 5、合合信息识别技术赋能古彝文数字化 1、前言 古彝文指的是在云南、贵州、四川等地的彝族人之…...

QT入门10个小demo——MP4视频播放器

🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 一、前…...

MySQL常用操作

目录 1. 安装MySQL/MariaDB2. 用户管理2.1 用户信息2.2 用户权限privileges 3. 增删改查3.1 增删数据库/表3.2 查询 参考 1. 安装MySQL/MariaDB # 1) 确认是否已安装mysql rpm -qa | grep mysql# 2) (如无)执行以下命令进行安装 ## 方法一 yum install …...

uni-app 之 Toast 消息提示

uni-app 之 Toast 消息提示 image.png <template> <view class"content"> <u-button click"showToast">Toast 消息提示 </u-button><u-toast ref"uToast"></u-toast></view></template> <…...

C语言--指针进阶3--数组指针

数组指针定义 类比&#xff1a; 整型指针--指向整型的指针 int a 10; int* pa &a; 字符指针--指向字符的指针 char ch a; char* pc &ch; 数组指针--指向数组的指针 int arr[10] { 0 }; int(*p)[10] &arr; // 数组指针 区分&#xff1a;指针数组和数组…...

购物车案例

1功能模块分析 请求动态渲染购物车&#xff0c;数据存vuex 数据框控件 修改数据 动态计算总价和总数量 2脚手架新建项目 终端安装axios&#xff1a;npm install axios -g 基于json-server工具&#xff0c;准备后端接口服务环境:&#xff08;模拟后台假数据&#xff09; 1…...

c++ chrono

chrono chrono是一个time library, 源于boost&#xff0c;现在是C标准 使用时&#xff0c;需要导入chrono&#xff0c;其所有实现均在std::chrono namespace下。 #include <chrono>chrono是一个模版库&#xff0c;使用简单&#xff0c;功能强大&#xff0c;有三个重要…...

实现长短地址的相互映射

长地址请求&#xff0c;返回短地址&#xff0c;如何实现长短地址的相互映射 转换为&#xff1a; 解决方式&#xff1a; 使用发号策略&#xff0c;给每一个长地址发一个号&#xff0c;不停自增&#xff0c;第一个使用这个服务的人得到的短地址是xx.xx/0 第二个是 xx.xx/1 &…...

第1讲:前后端分离思想

什么是前端 前端其实是个很大的范畴。 简单点说&#xff0c;针对浏览器的开发&#xff0c;浏览器呈现出来的页面就是前端。它的实质是前端代码在浏览器端被编译、运行、渲染。前端代码主要由三个部分构成&#xff1a;HTML&#xff08;超文本标记语言&#xff09;、CSS&#xf…...

【深度学习】【Opencv】Python/C++调用onnx模型【基础】

【深度学习】【Opencv】python/C调用onnx模型【基础】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【Opencv】python/C调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型 C版本OpenCVWindows平…...

C# MQTT通讯

文章目录 前言MQTTnetMQTT初始变量生成option连接Mqtt服务器发送数据添加订阅 前言 MQTTnet是Mqtt的net版本。国内MQTTnet教程比较老旧&#xff0c;都是2.x版本。MQTTnet在4.x版本版本代码逻辑有比较大的改动。所以最后还是面向Github编程。 EMQ X介绍及安装 长链接(MQTT)测…...

使用c++实现输出爱心(软件:visual Studio)

#include <iostream> using namespace std;int main() {//爱心曲线方程(x^2y^2-a)^3-x^2*y30double a 0.5;//定义绘图边界double bound 1.3 * sqrt(a);//x,y坐标变化步长double step 0.05;//二维扫描所有点,外层逐层扫描for (double y bound; y > -bound; y - ste…...

uploadifive上传工具php版使用

uploadifive自带的DEMO文件。 下载地址&#xff1a; http://www.uploadify.com/download/ <!DOCTYPE HTML> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"> <title>UploadiFive Test&…...

Docker容器管理

docker容器相当于一个进程&#xff0c;性能接近于原生&#xff0c;几乎没有损耗&#xff1b; docker容器在单台主机上支持的数量成百上千&#xff1b; 容器与容器之间相互隔离&#xff1b; 镜像是创建容器的基础&#xff0c;可以理解镜像为一个压缩包 Docker容器的管理 容…...

【文末送书】用Chat GPT轻松玩转机器学习与深度学习

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…...

Redis的学习

Redis Redis特征 键值型&#xff0c;value支持多种不同数据结构&#xff0c;功能丰富单线程&#xff0c;每个命令具有原子性低延迟&#xff0c;速度快&#xff08;基于内存&#xff0c;IO多路复用&#xff0c;良好的编码&#xff09;支持数据持久化支持主从集群&#xff0c;分…...

java版Spring Cloud+Mybatis+Oauth2+分布式+微服务+实现工程管理系统

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...