机器学习线性回归学习总结笔记
线性回归模板:
1)获取数据:
2)划分数据集:
一般使用:train_test_split()
划分数据集的包from sklearn.model_selection import train_test_split
3)标准化处理
StandardScaler()
引包:from sklearn.preprocessing import StandardScaler
-
fit(X)
:计算输入数据集 X 的均值和标准差。这些统计量将用于后续的数据转换。 -
transform(X)
:对输入数据集 X 进行标准化处理,即将 X 缩放到均值为 0、标准差为 1 的分布。 -
fit_transform(X)
:先计算 X 的均值和标准差,然后对 X 进行标准化处理。 -
inverse_transform(X)
:将经过标准化处理的数据集 X 还原回原始数据空间,即逆转标准化操作。
代码示例:
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
4)选择预估器
引包:from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge.......
-
LinearRegression
:实现了普通最小二乘线性回归模型。它适用于特征与目标之间的线性关系,并且假设模型的误差服从正态分布。 -
SGDRegressor
:使用随机梯度下降算法实现的线性回归模型。相比于LinearRegression
,SGDRegressor
对大规模数据集更加高效。 -
Ridge
:通过添加 L2 正则化项来改进线性回归模型。正则化有助于控制模型的复杂度,减轻过拟合问题。 -
lasso: 通过添加 L1 正则化项来改进线性回归模型。
。。。
5)得出模型
权重系数:coef_
偏置:intercept_
6)模型评估
使用mean_squared_error()函数计算均方误差:
引包:from sklearn.metrics import mean_squared_error
代码示例:
y_predict=estimatar.predict(x_test)
print('预测值',y_predict)
error=mean_squared_error(y_test,y_predict)
print('岭回归的均方误差:',error)
7)可视化操作
使用matplotlib
引包:
import matplotlib.pyplot as plt
代码示例:
fig=plt.figure()
ax1=fig.add_subplot(221)
plt.scatter(y_test,y_predict,s=50,c='r',marker='o')
ax1.set_xlabel('y_test',labelpad=10,color='blue')
ax1.set_ylabel('y_predict',color='blue')
ax1.set_title('ax1',color='blue',size=30)y_chazhi=np.array(y_predict-y_test)
ax2=fig.add_subplot(222)
plt.scatter(y_test,y_chazhi,s=50,c='y',marker='o')
ax2.set_xlabel('y_test',labelpad=10,color='blue')
ax2.set_ylabel('y_chazhi',color='blue')
ax2.set_title('ax2',color='blue',size=30)# 特征名和权重系数的bar图
ax3=fig.add_subplot(223)
name_diab=diab.feature_names
y=estimatar.coef_
plt.bar(name_diab,y)
ax3.set_xlabel('name_diab',labelpad=10,color='blue')
ax3.set_ylabel('estimatar.coef_',color='blue')
ax3.set_title('ax3',color='blue',size=30,alpha=0.5)plt.show()
相关文章:
机器学习线性回归学习总结笔记
线性回归模板: 1)获取数据: 2)划分数据集: 一般使用:train_test_split() 划分数据集的包from sklearn.model_selection import train_test_split 3)标准化处理 StandardScaler…...

火狐连接错误代码SEC_ERROR_UNKNOWN_ISSUER
最近开发的实验启动功能,测试人员用火狐浏览进行测试,一直报错 错误代码SEC_ERROR_UNKNOWN_ISSUER 在网上搜索很多文章,都没有解决我的问题,最后自己花时间研究了下,灵感来源于项目中,就类似于白名单的功能…...

react 网页/app复制分享链接到剪切板,分享到国外各大社交平台,通过WhatsApp方式分享以及SMS短信方式分享链接内容
1.需求 最近在做一个国际网站app,需要把app中某个页面的图文链接分享到国外各大社交平台上(facebook,whatapp,telegram,twitter等),以及通过WhatApp聊天方式分享,和SMS短信方式分享链接内容,该怎么做呢?图示如下: 分享到国外各大社交平台&am…...

用智能文字识别技术赋能古彝文数字化之路
目录 1、前言 2、对古彝文古籍的保护迫在眉睫 3、古彝文识别的难点问题 4、古彝文文字识别的关键技术 4.1、智能高清滤镜技术 4.2、图像矫正 4.3、图像增强 4.4、版面还原 5、合合信息识别技术赋能古彝文数字化 1、前言 古彝文指的是在云南、贵州、四川等地的彝族人之…...

QT入门10个小demo——MP4视频播放器
🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 一、前…...
MySQL常用操作
目录 1. 安装MySQL/MariaDB2. 用户管理2.1 用户信息2.2 用户权限privileges 3. 增删改查3.1 增删数据库/表3.2 查询 参考 1. 安装MySQL/MariaDB # 1) 确认是否已安装mysql rpm -qa | grep mysql# 2) (如无)执行以下命令进行安装 ## 方法一 yum install …...

uni-app 之 Toast 消息提示
uni-app 之 Toast 消息提示 image.png <template> <view class"content"> <u-button click"showToast">Toast 消息提示 </u-button><u-toast ref"uToast"></u-toast></view></template> <…...

C语言--指针进阶3--数组指针
数组指针定义 类比: 整型指针--指向整型的指针 int a 10; int* pa &a; 字符指针--指向字符的指针 char ch a; char* pc &ch; 数组指针--指向数组的指针 int arr[10] { 0 }; int(*p)[10] &arr; // 数组指针 区分:指针数组和数组…...
购物车案例
1功能模块分析 请求动态渲染购物车,数据存vuex 数据框控件 修改数据 动态计算总价和总数量 2脚手架新建项目 终端安装axios:npm install axios -g 基于json-server工具,准备后端接口服务环境:(模拟后台假数据) 1…...
c++ chrono
chrono chrono是一个time library, 源于boost,现在是C标准 使用时,需要导入chrono,其所有实现均在std::chrono namespace下。 #include <chrono>chrono是一个模版库,使用简单,功能强大,有三个重要…...

实现长短地址的相互映射
长地址请求,返回短地址,如何实现长短地址的相互映射 转换为: 解决方式: 使用发号策略,给每一个长地址发一个号,不停自增,第一个使用这个服务的人得到的短地址是xx.xx/0 第二个是 xx.xx/1 &…...

第1讲:前后端分离思想
什么是前端 前端其实是个很大的范畴。 简单点说,针对浏览器的开发,浏览器呈现出来的页面就是前端。它的实质是前端代码在浏览器端被编译、运行、渲染。前端代码主要由三个部分构成:HTML(超文本标记语言)、CSS…...

【深度学习】【Opencv】Python/C++调用onnx模型【基础】
【深度学习】【Opencv】python/C调用onnx模型【基础】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【Opencv】python/C调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型 C版本OpenCVWindows平…...

C# MQTT通讯
文章目录 前言MQTTnetMQTT初始变量生成option连接Mqtt服务器发送数据添加订阅 前言 MQTTnet是Mqtt的net版本。国内MQTTnet教程比较老旧,都是2.x版本。MQTTnet在4.x版本版本代码逻辑有比较大的改动。所以最后还是面向Github编程。 EMQ X介绍及安装 长链接(MQTT)测…...

使用c++实现输出爱心(软件:visual Studio)
#include <iostream> using namespace std;int main() {//爱心曲线方程(x^2y^2-a)^3-x^2*y30double a 0.5;//定义绘图边界double bound 1.3 * sqrt(a);//x,y坐标变化步长double step 0.05;//二维扫描所有点,外层逐层扫描for (double y bound; y > -bound; y - ste…...

uploadifive上传工具php版使用
uploadifive自带的DEMO文件。 下载地址: http://www.uploadify.com/download/ <!DOCTYPE HTML> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"> <title>UploadiFive Test&…...
Docker容器管理
docker容器相当于一个进程,性能接近于原生,几乎没有损耗; docker容器在单台主机上支持的数量成百上千; 容器与容器之间相互隔离; 镜像是创建容器的基础,可以理解镜像为一个压缩包 Docker容器的管理 容…...

【文末送书】用Chat GPT轻松玩转机器学习与深度学习
欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关…...

Redis的学习
Redis Redis特征 键值型,value支持多种不同数据结构,功能丰富单线程,每个命令具有原子性低延迟,速度快(基于内存,IO多路复用,良好的编码)支持数据持久化支持主从集群,分…...

java版Spring Cloud+Mybatis+Oauth2+分布式+微服务+实现工程管理系统
鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展,企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性,公司对内部工程管…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...