当前位置: 首页 > news >正文

机器学习线性回归学习总结笔记

线性回归模板:

1)获取数据:

2)划分数据集:

一般使用:train_test_split()

划分数据集的包from sklearn.model_selection import train_test_split

3)标准化处理

StandardScaler()

引包:from sklearn.preprocessing import StandardScaler

  • fit(X):计算输入数据集 X 的均值和标准差。这些统计量将用于后续的数据转换。

  • transform(X):对输入数据集 X 进行标准化处理,即将 X 缩放到均值为 0、标准差为 1 的分布。

  • fit_transform(X):先计算 X 的均值和标准差,然后对 X 进行标准化处理。

  • inverse_transform(X):将经过标准化处理的数据集 X 还原回原始数据空间,即逆转标准化操作。

代码示例:

transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)

4)选择预估器

引包:from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge.......

  1. LinearRegression:实现了普通最小二乘线性回归模型。它适用于特征与目标之间的线性关系,并且假设模型的误差服从正态分布。

  2. SGDRegressor:使用随机梯度下降算法实现的线性回归模型。相比于 LinearRegressionSGDRegressor 对大规模数据集更加高效。

  3. Ridge:通过添加 L2 正则化项来改进线性回归模型。正则化有助于控制模型的复杂度,减轻过拟合问题。

  4. lasso: 通过添加 L1 正则化项来改进线性回归模型。
    。。。

5)得出模型

权重系数:coef_

偏置:intercept_

6)模型评估

使用mean_squared_error()函数计算均方误差:

引包:from sklearn.metrics import mean_squared_error

代码示例:

y_predict=estimatar.predict(x_test)
print('预测值',y_predict)
error=mean_squared_error(y_test,y_predict)
print('岭回归的均方误差:',error)

7)可视化操作

使用matplotlib

引包:

import matplotlib.pyplot as plt

代码示例:

fig=plt.figure()
ax1=fig.add_subplot(221)
plt.scatter(y_test,y_predict,s=50,c='r',marker='o')
ax1.set_xlabel('y_test',labelpad=10,color='blue')
ax1.set_ylabel('y_predict',color='blue')
ax1.set_title('ax1',color='blue',size=30)y_chazhi=np.array(y_predict-y_test)
ax2=fig.add_subplot(222)
plt.scatter(y_test,y_chazhi,s=50,c='y',marker='o')
ax2.set_xlabel('y_test',labelpad=10,color='blue')
ax2.set_ylabel('y_chazhi',color='blue')
ax2.set_title('ax2',color='blue',size=30)# 特征名和权重系数的bar图
ax3=fig.add_subplot(223)
name_diab=diab.feature_names
y=estimatar.coef_
plt.bar(name_diab,y)
ax3.set_xlabel('name_diab',labelpad=10,color='blue')
ax3.set_ylabel('estimatar.coef_',color='blue')
ax3.set_title('ax3',color='blue',size=30,alpha=0.5)plt.show()

相关文章:

机器学习线性回归学习总结笔记

线性回归模板: 1)获取数据: 2)划分数据集: 一般使用:train_test_split() 划分数据集的包from sklearn.model_selection import train_test_split 3)标准化处理 StandardScaler…...

火狐连接错误代码SEC_ERROR_UNKNOWN_ISSUER

最近开发的实验启动功能,测试人员用火狐浏览进行测试,一直报错 错误代码SEC_ERROR_UNKNOWN_ISSUER 在网上搜索很多文章,都没有解决我的问题,最后自己花时间研究了下,灵感来源于项目中,就类似于白名单的功能…...

react 网页/app复制分享链接到剪切板,分享到国外各大社交平台,通过WhatsApp方式分享以及SMS短信方式分享链接内容

1.需求 最近在做一个国际网站app,需要把app中某个页面的图文链接分享到国外各大社交平台上(facebook,whatapp,telegram,twitter等),以及通过WhatApp聊天方式分享,和SMS短信方式分享链接内容,该怎么做呢?图示如下: 分享到国外各大社交平台&am…...

用智能文字识别技术赋能古彝文数字化之路

目录 1、前言 2、对古彝文古籍的保护迫在眉睫 3、古彝文识别的难点问题 4、古彝文文字识别的关键技术 4.1、智能高清滤镜技术 4.2、图像矫正 4.3、图像增强 4.4、版面还原 5、合合信息识别技术赋能古彝文数字化 1、前言 古彝文指的是在云南、贵州、四川等地的彝族人之…...

QT入门10个小demo——MP4视频播放器

🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 一、前…...

MySQL常用操作

目录 1. 安装MySQL/MariaDB2. 用户管理2.1 用户信息2.2 用户权限privileges 3. 增删改查3.1 增删数据库/表3.2 查询 参考 1. 安装MySQL/MariaDB # 1) 确认是否已安装mysql rpm -qa | grep mysql# 2) (如无)执行以下命令进行安装 ## 方法一 yum install …...

uni-app 之 Toast 消息提示

uni-app 之 Toast 消息提示 image.png <template> <view class"content"> <u-button click"showToast">Toast 消息提示 </u-button><u-toast ref"uToast"></u-toast></view></template> <…...

C语言--指针进阶3--数组指针

数组指针定义 类比&#xff1a; 整型指针--指向整型的指针 int a 10; int* pa &a; 字符指针--指向字符的指针 char ch a; char* pc &ch; 数组指针--指向数组的指针 int arr[10] { 0 }; int(*p)[10] &arr; // 数组指针 区分&#xff1a;指针数组和数组…...

购物车案例

1功能模块分析 请求动态渲染购物车&#xff0c;数据存vuex 数据框控件 修改数据 动态计算总价和总数量 2脚手架新建项目 终端安装axios&#xff1a;npm install axios -g 基于json-server工具&#xff0c;准备后端接口服务环境:&#xff08;模拟后台假数据&#xff09; 1…...

c++ chrono

chrono chrono是一个time library, 源于boost&#xff0c;现在是C标准 使用时&#xff0c;需要导入chrono&#xff0c;其所有实现均在std::chrono namespace下。 #include <chrono>chrono是一个模版库&#xff0c;使用简单&#xff0c;功能强大&#xff0c;有三个重要…...

实现长短地址的相互映射

长地址请求&#xff0c;返回短地址&#xff0c;如何实现长短地址的相互映射 转换为&#xff1a; 解决方式&#xff1a; 使用发号策略&#xff0c;给每一个长地址发一个号&#xff0c;不停自增&#xff0c;第一个使用这个服务的人得到的短地址是xx.xx/0 第二个是 xx.xx/1 &…...

第1讲:前后端分离思想

什么是前端 前端其实是个很大的范畴。 简单点说&#xff0c;针对浏览器的开发&#xff0c;浏览器呈现出来的页面就是前端。它的实质是前端代码在浏览器端被编译、运行、渲染。前端代码主要由三个部分构成&#xff1a;HTML&#xff08;超文本标记语言&#xff09;、CSS&#xf…...

【深度学习】【Opencv】Python/C++调用onnx模型【基础】

【深度学习】【Opencv】python/C调用onnx模型【基础】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【Opencv】python/C调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型 C版本OpenCVWindows平…...

C# MQTT通讯

文章目录 前言MQTTnetMQTT初始变量生成option连接Mqtt服务器发送数据添加订阅 前言 MQTTnet是Mqtt的net版本。国内MQTTnet教程比较老旧&#xff0c;都是2.x版本。MQTTnet在4.x版本版本代码逻辑有比较大的改动。所以最后还是面向Github编程。 EMQ X介绍及安装 长链接(MQTT)测…...

使用c++实现输出爱心(软件:visual Studio)

#include <iostream> using namespace std;int main() {//爱心曲线方程(x^2y^2-a)^3-x^2*y30double a 0.5;//定义绘图边界double bound 1.3 * sqrt(a);//x,y坐标变化步长double step 0.05;//二维扫描所有点,外层逐层扫描for (double y bound; y > -bound; y - ste…...

uploadifive上传工具php版使用

uploadifive自带的DEMO文件。 下载地址&#xff1a; http://www.uploadify.com/download/ <!DOCTYPE HTML> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"> <title>UploadiFive Test&…...

Docker容器管理

docker容器相当于一个进程&#xff0c;性能接近于原生&#xff0c;几乎没有损耗&#xff1b; docker容器在单台主机上支持的数量成百上千&#xff1b; 容器与容器之间相互隔离&#xff1b; 镜像是创建容器的基础&#xff0c;可以理解镜像为一个压缩包 Docker容器的管理 容…...

【文末送书】用Chat GPT轻松玩转机器学习与深度学习

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…...

Redis的学习

Redis Redis特征 键值型&#xff0c;value支持多种不同数据结构&#xff0c;功能丰富单线程&#xff0c;每个命令具有原子性低延迟&#xff0c;速度快&#xff08;基于内存&#xff0c;IO多路复用&#xff0c;良好的编码&#xff09;支持数据持久化支持主从集群&#xff0c;分…...

java版Spring Cloud+Mybatis+Oauth2+分布式+微服务+实现工程管理系统

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

Qt的学习(二)

1. 创建Hello Word 两种方式&#xff0c;实现helloworld&#xff1a; 1.通过图形化的方式&#xff0c;在界面上创建出一个控件&#xff0c;显示helloworld 2.通过纯代码的方式&#xff0c;通过编写代码&#xff0c;在界面上创建控件&#xff0c; 显示hello world&#xff1b; …...

多模态大语言模型arxiv论文略读(110)

CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving ➡️ 论文标题&#xff1a;CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving ➡️ 论文作者&#xff1a;Hidehisa Arai, Keita Miwa, Kento Sasaki, Yu Yamaguchi, …...

HarmonyOS-ArkUI 自定义弹窗

自定义弹窗 自定义弹窗是界面开发中最为常用的一种弹窗写法。在自定义弹窗中&#xff0c; 布局样式完全由您决定&#xff0c;非常灵活。通常会被封装成工具类&#xff0c;以使得APP中所有弹窗具备相同的设计风格。 自定义弹窗具备的能力有 打开弹窗自定义布局&#xff0c;以…...