【MySQL】 MySQL 更新数据机制
MySQL 更新数据机制
一、问题描述
假设我们有这样一张表,且包含一条记录:
CREATE TABLE mytest (
id int(11) NOT NULL,
c1 int(11) DEFAULT NULL,
c2 int(11) DEFAULT NULL,
c3 int(11) DEFAULT NULL,
PRIMARY KEY (id),
KEY c1 (c1),
KEY c2 (c2)
包含记录:
±—±-----±-----±-----+
| id | c1 | c2 | c3 |
±—±-----±-----±-----+
| 1 | 11 | 12 | 13 |
这个表实际上包含3个索引:
主键索引(且值包含一个block)
索引c1(且值包含一个block)
索引c2(且值包含一个block)
那么我们考虑如下的语句:
A: update mytest set c1=11,c2=12,c3=13 where id=1(c1\c2\c3字段都不更改)
B: update mytest set c1=11,c2=12,c3=14 where id=1(c1\c2字段不更改)
C: update mytest set c1=12,c2=12,c3=14 where id=1(c2字段不更改)
那么问题如下:
A 场景下各个索引的值是否更改,也就是实际的各个索引block是否更改。
B 场景下索引c1和索引c2的数据是否更改,也就是实际的索引c1和索引c2的block是否更改。
C 场景下索引c2的数据是否更改,也就是实际索引c2的block是否更改。
二、大概的半段方式和流程
对于update语句来讲,函数mysql_update对修改流程大概如下:
扫描数据,获取数据(rr_sequential),存储mysql格式的数据到record[0]中,其表示大概如下:
field1 | field2 | … | fieldN
每个field都包含一个指向实际数据的指针。
保存获取的mysql格式的数据到record[1]中,然后使用语法解析后的信息填充获取的record[0]中的数据(fill_record_n_invoke_before_triggers->fill_record),这里就是使用c1=,c2=,c3=*填充数据,需要填充的数据和字段实际上保存在两个List中分别为Item_feild和Item_int类型的链表我们这里就叫做column_list和values_list,它们在bsion规则文件中使用如下表示:
$$.column_list->push_back($1.column) ||$$.value_list->push_back($1.value))
下面使用语句update mytest set c1=11,c2=12,c3=13 where id=1来debug一下这个两个list,我们断点放到fill_record_n_invoke_before_triggers就可以了,
(gdb) p fields
$67 = (List &) @0x7fff30005da8: {<base_list> = {<Sql_alloc> = {}, first = 0x7fff300067f8, last = 0x7fff30006af8, elements = 3}, }
(gdb) p ((Item_field )(fields->first->info)).field_name
$68 = 0x7fff309316d4 “c1”
(gdb) p ((Item_field )(fields->first->next->info)).field_name
$69 = 0x7fff309316d7 “c2”
(gdb) p ((Item_field )(fields->first->next->next->info)).field_name
$70 = 0x7fff309316da “c3”
(gdb) p values
$73 = (List &) @0x7fff30006e38: {<base_list> = {<Sql_alloc> = {}, first = 0x7fff30006808, last = 0x7fff30006b08, elements = 3}, }
(gdb) p ((Item_int)(values->first->info)).value
$74 = 11
(gdb) p ((Item_int)(values->first->next->info)).value
$75 = 12
(gdb) p ((Item_int)(values->first->next->next->info)).value
$76 = 13
这样修改后record[0]中需要修改的字段的值就变为了本次update语句中的值。
过滤点1,比对record[0]和record[1] 中数据是否有差异,如果完全相同则不触发update,这里也就对应我们的场景A,因为前后记录的值一模一样,因此是不会做任何数据更改的,这里直接跳过了*。
到这里肯定是要修改数据的,因此对比record[0]和record[1]的记录,将需要修改的字段的值和字段号放入到数组m_prebuilt->upd_node->update中(calc_row_difference),其中主要是需要修改的new值和需要修改的field_no比对方式为:
长度是否更改了(len)
实际值更改了(memcmp比对结果)
确认修改的字段是否包含了二级索引。因为前面已经统计出来了需要更改的字段(row_upd的开头),那么这里对比的方式如下:
如果为delete语句显然肯定包含所有的二级索引
如果为update语句,根据前面数组中字段的号和字典中字段是否排序进行比对,因为二级索引的字段一定是排序的如果两个条件都不满足
如果两个条件都不满足,这说明没有任何二级索引在本次修改中需要修改,设置本次update的标记为UPD_NODE_NO_ORD_CHANGE,UPD_NODE_NO_ORD_CHANGE则代表不需要修改任何二级索引字段。注意这里还会转换为innodb的行格式(row_mysql_store_col_in_innobase_format)。
过滤点2,先修改主键,如果为UPD_NODE_NO_ORD_CHANGE update这不做二级索引更改,也就是不调用row_upd_sec_step函数,这是显然的,因为没有二级索引的字段需要更改(函数row_upd_clust_step中实现),这里对应了场景B,虽然 c3字段修改了数据,但是c1\c2字段前后的值一样,所以实际索引c1和索引c2不会更改,只修改主键索引。
如果需要更改二级索引,依次扫描字典中的每个二级索引循环开启。
过滤点3首选需要确认修改的二级索引字段是否在本索引中,如果修改的字段根本就没有在这个二级索引中,显然不需要修改本次循环的索引了。而这个判断在函数row_upd_changes_ord_field_binary中,方式为循环字典中本二级索引的每个字段判定,
如果本字段不在m_prebuilt->upd_node->update数组中,直接进行下一个字段,说明本字段不需要修改
如果本字段在m_prebuilt->upd_node->update数组中,这进行调用函数dfield_datas_are_binary_equal进行比较,也就是比较实际的值是否更改
这里实际上对应了我们的场景3,因为c2字段的值没有更改,因此索引c2不会做实际的更改,但是主键索引和索引c1需要更改值。
三、结论
从代码中我们可以看到,实际上在MySQL或者innodb中,实际上只会对有数据修改的索引进行实际的更改。那么前面提到的几个场景如下:
A: update mytest set c1=11,c2=12,c3=13 where id=1(c1\c2\c3字段都不更改) 不做任何数据修改
B: update mytest set c1=11,c2=12,c3=14 where id=1(c1\c2字段不更改) 只更改主键索引
C: update mytest set c1=12,c2=12,c3=14 where id=1(c2字段不更改) 只更改主键索引和索引c1
四、验证
对于验证我们验证场景3,这里主要通过block的last_modify_lsn进行验证,因为一个block只要修改了数据,脏数据刷盘后其last_modify_lsn一定会修改,步骤如下:
初始化数据 这里mytest表为测试表,而mytest2表主要的作用是修改数据推进lsn
CREATE TABLE mytest (
id int(11) NOT NULL,
c1 int(11) DEFAULT NULL,
c2 int(11) DEFAULT NULL,
c3 int(11) DEFAULT NULL,
PRIMARY KEY (id),
KEY c1 (c1),
KEY c2 (c2)
) ENGINE=InnoDB;
insert into mytest values(1,11,12,13);
insert into mytest values(2,14,15,16);
insert into mytest values(3,17,18,19);
insert into mytest values(4,20,21,22);
insert into mytest values(5,23,24,25);
insert into mytest values(6,26,27,28);
insert into mytest values(7,29,30,31);
insert into mytest values(8,32,33,34);
insert into mytest values(9,35,36,37);
insert into mytest values(10,38,39,40);
CREATE TABLE mytest2 (
id int(11) NOT NULL AUTO_INCREMENT,
c1 int(11) DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB;
INSERT INTO mytest2(c1) values(1);
记录当前lsn
由于是测试库show engine的lsn是静止的如下 Log sequence number 4806780238 Log flushed up to 4806780238 Pages flushed up to 4806780238 且 Modified db pages 0 没有脏页
都说明脏数据全部刷盘了
查询各个索引对应block
mysql> select *from information_schema.INNODB_SYS_TABLES where NAME like ‘testnew/mytest%’;
±---------±----------------±-----±-------±------±------------±-----------±--------------±-----------+
| TABLE_ID | NAME | FLAG | N_COLS | SPACE | FILE_FORMAT | ROW_FORMAT | ZIP_PAGE_SIZE | SPACE_TYPE |
±---------±----------------±-----±-------±------±------------±-----------±--------------±-----------+
| 19071 | testnew/mytest | 33 | 7 | 10854 | Barracuda | Dynamic | 0 | Single |
| 19072 | testnew/mytest2 | 33 | 5 | 10855 | Barracuda | Dynamic | 0 | Single |
±---------±----------------±-----±-------±------±------------±-----------±--------------±-----------+
2 rows in set (0.00 sec)
mysql> select * from information_schema.INNODB_SYS_INDEXES where space=10854;
±---------±--------±---------±-----±---------±--------±------±----------------+
| INDEX_ID | NAME | TABLE_ID | TYPE | N_FIELDS | PAGE_NO | SPACE | MERGE_THRESHOLD |
±---------±--------±---------±-----±---------±--------±------±----------------+
| 10957 | PRIMARY | 19071 | 3 | 1 | 3 | 10854 | 50 |
| 10958 | c1 | 19071 | 0 | 1 | 4 | 10854 | 50 |
| 10959 | c2 | 19071 | 0 | 1 | 5 | 10854 | 50 |
±---------±--------±---------±-----±---------±--------±------±----------------+
3 rows in set (0.01 sec)
这里找到INDEX_ID 10957 主键,10958 c1 索引,10959 c2 索引。
./innblock mytest.ibd scan 16
===INDEX_ID:10957
level0 total block is (1)
block_no: 3,level: 0||
===INDEX_ID:10958
level0 total block is (1)
block_no: 4,level: 0||
===INDEX_ID:10959
level0 total block is (1)
block_no: 5,level: 0|*|
这里我们发现 10957的block为3 ,10958的block为4,10959的block为5,下面分别获取他们的信息
使用blockinfo工具查看当前mytest各个block的lsn
10957 PRIMARY block 3
./innblock mytest.ibd 3 16
==== Block base info ====
block_no:3 space_id:10854 index_id:10957
…
last_modify_lsn:4806771220 (注意这里)
page_type:B+_TREE level:0
10958 c1 block 4
./innblock mytest.ibd 4 16
==== Block base info ====
block_no:4 space_id:10854 index_id:10958
…
last_modify_lsn:4806771252(注意这里)
10959 c2 block 5
./innblock mytest.ibd 5 16
==== Block base info ====
block_no:5 space_id:10854 index_id:10959
last_modify_lsn:4806771284(注意这里)
这里我们就将3个page的last_modify_lsn获取到了大概在4806771200附近
mytest2表做一些数据修改推进lsn
INSERT INTO mytest2(c1) select c1 from mytest2;
INSERT INTO mytest2(c1) select c1 from mytest2;
…
INSERT INTO mytest2(c1) select c1 from mytest2;
Query OK, 32768 rows affected (13.27 sec)
Records: 32768 Duplicates: 0 Warnings: 0
mysql> select count() from mytest2;
±---------+
| count() |
±---------+
| 65536 |
±---------+
1 row in set (1.46 sec)
再次查看系统的lsn
Log sequence number 4867604378
Log flushed up to 4867604378
Pages flushed up to 4867604378
Modified db pages 0
这个时候lsn变化了,但是脏数据已经刷脏。
对mytest表进行修改
修改这行记录 id c1 c2 c3 2 14 15 16
update t1 set c1=14,c2=115,c3=116 where id=2;
相关文章:
【MySQL】 MySQL 更新数据机制
MySQL 更新数据机制 一、问题描述 假设我们有这样一张表,且包含一条记录: CREATE TABLE mytest ( id int(11) NOT NULL, c1 int(11) DEFAULT NULL, c2 int(11) DEFAULT NULL, c3 int(11) DEFAULT NULL, PRIMARY KEY (id), KEY c1 (c1), KEY c2 (c2) 包…...
批次管理在MES管理系统中有哪些应用
在制造企业中,批次管理是一项至关重要的管理方法,它贯穿于企业的整个生产过程中。特别是在流程制造行业中,如药品、食品等行业,批次管理显得尤为重要。这些行业的产品通常需要进行严格的质量控制和追踪,以便在问题发生…...
python命名规范
一、概述 以前写python代码没有个代码,写出的代码一点也不规范 二、命名规范 2.1类的命名规范 总是使用首字母大写单词串。如MyClass、ClassName。内部类可以使用额外的前导下划线。 2.2函数和方法的命名规范 小写下划线,如method_name。 2.3函数…...
Redis学习笔记--002
Redis的JAVA客户端 文章目录 Redis的JAVA客户端一、Redis的Java客户端的种类二、Jedis2.1、使用步骤2.2、Jedis连接池 三、[SpringDataRedis](https://spring.io/projects/spring-data-redis)3.1、介绍3.2、RedisTemplate3.3、SpringDataRedis使用步骤3.4、SpringDataRedis的序…...
Visual Stdio 2019 win10 64bit下 无法找到 资源编译器DLL,请确认路径是否正确,和无法下载 win10SDK_10.0
上面的2个原因 第一个原因是因为安装时候,漏掉勾选 vistual stdio sdk 和 windows 通用c运行时 其中的一项目 第2个原因是没有安装 sdk...
设计模式:中介者模式(C++实现)
在中介者模式中,中介者对象负责协调多个对象之间的交互,将对象之间的耦合度降低。 #include <iostream> #include <string> #include <vector>class Colleague;// 中介者接口 class Mediator { public:virtual void sendMessage(Coll…...
Python常用函数
最近跑实验,记录一些常用的 Python 函数,便于自己复习和学习,仅用来学习。 1.Python 中的 os.path.join() 参考该文章 深度了解 在 Python 中,处理文件和目录路径是常见的任务。为了简化路径的拼接和操作,Python 提供…...
进程与线程的记忆方法
有很多人经常会分不清进程与线程的关系, 嗯。。。。。。可能只有我自己记不清吧 举个例子: 进程:登录一个qq号,就是一个进程。 线程:同时打开多个窗口聊天,就是多个线程。 每次记忆完,过了一段…...
支持私有化部署的 WorkPlus,助您构建定制化的即时通讯平台
随着信息技术的飞速发展,企业对于即时通讯平台的需求也不断提升。而在信息安全日益重要的时代背景下,随之而来的是对数据保护和隐私安全的高度关注。私有化即时通讯平台应运而生,成为企业保护数据安全的守护者。在众多品牌中,Work…...
adjustText库解决深度学习、视觉模型matplotlib画散点图时由于标签非常多导致的重叠现象
pytorch框架 import matplotlib.pyplot as plt import numpy as np from adjustText import adjust_texty [30.48, 30.71, 30.52, 31.35, 31.53, 31.54, 31.82, 32.13, 32.21, 32.15, 31.92, 32.24, 32.21, 32.20, 32.35] x [0.057, 0.012, 0.025, 0.665, 1.774, 0.813, 0.55…...
机器学习线性回归学习总结笔记
线性回归模板: 1)获取数据: 2)划分数据集: 一般使用:train_test_split() 划分数据集的包from sklearn.model_selection import train_test_split 3)标准化处理 StandardScaler…...
火狐连接错误代码SEC_ERROR_UNKNOWN_ISSUER
最近开发的实验启动功能,测试人员用火狐浏览进行测试,一直报错 错误代码SEC_ERROR_UNKNOWN_ISSUER 在网上搜索很多文章,都没有解决我的问题,最后自己花时间研究了下,灵感来源于项目中,就类似于白名单的功能…...
react 网页/app复制分享链接到剪切板,分享到国外各大社交平台,通过WhatsApp方式分享以及SMS短信方式分享链接内容
1.需求 最近在做一个国际网站app,需要把app中某个页面的图文链接分享到国外各大社交平台上(facebook,whatapp,telegram,twitter等),以及通过WhatApp聊天方式分享,和SMS短信方式分享链接内容,该怎么做呢?图示如下: 分享到国外各大社交平台&am…...
用智能文字识别技术赋能古彝文数字化之路
目录 1、前言 2、对古彝文古籍的保护迫在眉睫 3、古彝文识别的难点问题 4、古彝文文字识别的关键技术 4.1、智能高清滤镜技术 4.2、图像矫正 4.3、图像增强 4.4、版面还原 5、合合信息识别技术赋能古彝文数字化 1、前言 古彝文指的是在云南、贵州、四川等地的彝族人之…...
QT入门10个小demo——MP4视频播放器
🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 一、前…...
MySQL常用操作
目录 1. 安装MySQL/MariaDB2. 用户管理2.1 用户信息2.2 用户权限privileges 3. 增删改查3.1 增删数据库/表3.2 查询 参考 1. 安装MySQL/MariaDB # 1) 确认是否已安装mysql rpm -qa | grep mysql# 2) (如无)执行以下命令进行安装 ## 方法一 yum install …...
uni-app 之 Toast 消息提示
uni-app 之 Toast 消息提示 image.png <template> <view class"content"> <u-button click"showToast">Toast 消息提示 </u-button><u-toast ref"uToast"></u-toast></view></template> <…...
C语言--指针进阶3--数组指针
数组指针定义 类比: 整型指针--指向整型的指针 int a 10; int* pa &a; 字符指针--指向字符的指针 char ch a; char* pc &ch; 数组指针--指向数组的指针 int arr[10] { 0 }; int(*p)[10] &arr; // 数组指针 区分:指针数组和数组…...
购物车案例
1功能模块分析 请求动态渲染购物车,数据存vuex 数据框控件 修改数据 动态计算总价和总数量 2脚手架新建项目 终端安装axios:npm install axios -g 基于json-server工具,准备后端接口服务环境:(模拟后台假数据) 1…...
c++ chrono
chrono chrono是一个time library, 源于boost,现在是C标准 使用时,需要导入chrono,其所有实现均在std::chrono namespace下。 #include <chrono>chrono是一个模版库,使用简单,功能强大,有三个重要…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
