Python-表白小程序练习
测试代码
在结果导向的今天,切勿眼高于顶,不论用任何方法能转换、拿出实际成果东西才是关键,即使一个制作很简易的程序,你想将其最终生成可运行的版本也是需要下一番功夫的。不要努力成为一个嘴炮成功者,要努力成为一个有价值的人。
# encoding: utf-8
import random
import time
import tkinter as tk
from tkinter import messagebox #导入弹窗库
from math import sin, cos, pi, log,tan
from tkinter import *
############参数修改#####################
CANVAS_WIDTH = 640 # 画布的宽
CANVAS_HEIGHT = 480 # 画布的高
CANVAS_CENTER_X = CANVAS_WIDTH / 2 # 画布中心的X轴坐标
CANVAS_CENTER_Y = CANVAS_HEIGHT / 2 # 画布中心的Y轴坐标
IMAGE_ENLARGE = 11 # 放大比例
HEART_COLOR = "#e86184" # 心的颜色
WINDOWS_TITLE = 'I Love You' # 窗口标题
HEART_CENTER_TEXT = 'Lara' # 中间文字
HEART_CENTER_TEXT_COLOR = '#FFD700' # 中间文字颜色
#################爱心函数########################
def heart_function(t, shrink_ratio: float = IMAGE_ENLARGE):
# 基础函数
x = 14.6 * (sin(t) ** 3)
y = -(14.5 * cos(t) - 4 * cos(2 * t) - 2 * cos(3 * t) - 0.5 * cos(4 * t))
# 放大
x *= shrink_ratio
y *= shrink_ratio
# 移到画布中央
x += CANVAS_CENTER_X
y += CANVAS_CENTER_Y
return int(x), int(y)
#################爱心内部的扩散情况########################
#调整beta可以调整扩散情况
def scatter_inside(x, y, beta=0.15):
ratio_x = - beta * log(random.random())
ratio_y = - beta * log(random.random())
dx = ratio_x * (x - CANVAS_CENTER_X)
dy = ratio_y * (y - CANVAS_CENTER_Y)
return x - dx, y - dy
#################抖动情况########################
def shrink(x, y, ratio):
force = -1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.6) # 这个参数...
dx = ratio * force * (x - CANVAS_CENTER_X)
dy = ratio * force * (y - CANVAS_CENTER_Y)
return x - dx, y - dy
#################爱心跳动函数########################
# https://cubic-bezier.com/ 贝塞尔参数网站,参考值为: curve(p, (.4, .5, .2, .6))
def heart_curve(p):
return curve(p, (.4, .5, .2, .6)) # 爱心的贝塞尔曲线参数
#################光环跳动函数########################
# https://cubic-bezier.com/ 贝塞尔参数网站,参考值为: curve(p, (.73,.55,.59,.92))
def heart_halo_curve(p):
return curve(p, (.73,.55,.59,.92)) #光环的贝塞尔曲线参数
#################跳动模式的调整########################
def curve(p, b):
t = sin(p)
p0 = b[0]
p1 = b[1]
p2 = b[2]
p3 = b[3]
t1 = (1 - t)
t2 = t1 * t1
t3 = t2 * t1
# 贝塞尔模式
# r = p0 * t3 + 3 * p1 * t * t2 + 3 * p2 * t * t * t1 + p3 * (t ** 3)
# 三角函数模式
r = 2 * (2 * sin(4 * p)) / (2 * pi)
return r
#################创建一个心的类########################
class Heart:
def __init__(self, generate_frame=20):
self._points = set() # 原始爱心坐标集合
self._edge_diffusion_points = set() # 边缘扩散效果点坐标集合
self._center_diffusion_points = set() # 中心扩散效果点坐标集合
self.all_points = {} # 每帧动态点坐标
self.build(2000) # 初始的点数,不宜过大
self.generate_frame = generate_frame
for frame in range(generate_frame):
self.calc(frame)
def build(self, number):
# 爱心
for _ in range(number):
t = random.uniform(0, 2 * pi)
x, y = heart_function(t)
self._points.add((x, y))
# 爱心内扩散
for _x, _y in list(self._points):
for _ in range(3):
x, y = scatter_inside(_x, _y, 0.05)
self._edge_diffusion_points.add((x, y))
# 爱心内再次扩散
point_list = list(self._points)
for _ in range(4000):
x, y = random.choice(point_list)
x, y = scatter_inside(x, y, 0.24) # 调整爱心的散点数量,参考值:0.24
self._center_diffusion_points.add((x, y))
@staticmethod
def calc_position(x, y, ratio):
# 调整缩放比例
force = 1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.47) # 魔法参数
dx = ratio * force * (x - CANVAS_CENTER_X) + random.randint(-1, 1)
dy = ratio * force * (y - CANVAS_CENTER_Y) + random.randint(-1, 1)
return x - dx, y - dy
def calc(self, generate_frame):
ratio = 10 * heart_curve(generate_frame / 10 * pi) # 圆滑的周期的缩放比例
halo_radius = int(4 + 6 * (1 + heart_halo_curve(generate_frame / 10 * pi)))
halo_number = int(3000 + 4000 * abs(heart_halo_curve(generate_frame / 10 * pi) ** 2))
all_points = []
# 光环
heart_halo_point = set() # 光环的点坐标集合
for _ in range(halo_number):
t = random.uniform(0, 2 * pi)
x, y = heart_function(t, shrink_ratio=heart_halo_curve(generate_frame / 10 * pi) + 11)
x, y = shrink(x, y, halo_radius)
if (x, y) not in heart_halo_point:
heart_halo_point.add((x, y))
random_int_range = int(27 + heart_halo_curve(generate_frame / 10 * pi) * 4)
x += random.randint(-random_int_range, random_int_range)
y += random.randint(-random_int_range, random_int_range)
size = random.choice((1, 1, 2))
all_points.append((x, y, size))
# 轮廓
for x, y in self._points:
x, y = self.calc_position(x, y, ratio)
size = random.randint(1, 3)
all_points.append((x, y, size))
# 内容
for x, y in self._edge_diffusion_points:
x, y = self.calc_position(x, y, ratio)
size = random.randint(1, 2)
all_points.append((x, y, size))
for x, y in self._center_diffusion_points:
x, y = self.calc_position(x, y, ratio)
size = random.randint(1, 2)
all_points.append((x, y, size))
self.all_points[generate_frame] = all_points
def render(self, render_canvas, render_frame):
for x, y, size in self.all_points[render_frame % self.generate_frame]:
render_canvas.create_rectangle(x, y, x + size, y + size, width=0, fill=HEART_COLOR)
def frame_count(self):
return self.generate_frame
#################绘制函数########################
def draw(main: Tk, render_canvas_dict: dict, render_heart: Heart, render_frame=0):
frame_index = render_frame % render_heart.frame_count()
last_frame_index = (frame_index + render_heart.frame_count() - 1) % render_heart.frame_count()
if last_frame_index in render_canvas_dict:
render_canvas_dict[last_frame_index].pack_forget()
if frame_index not in render_canvas_dict:
canvas = Canvas(
main,
bg='black', # 背景颜色
height=CANVAS_HEIGHT,
width=CANVAS_WIDTH
)
canvas.pack()
render_heart.render(canvas, render_frame)
canvas.create_text(
CANVAS_CENTER_X,
CANVAS_CENTER_Y,
text=HEART_CENTER_TEXT,
fill=HEART_CENTER_TEXT_COLOR,
font=('楷体', 48, 'bold') # 字体
)
render_canvas_dict[frame_index] = canvas
else:
render_canvas_dict[frame_index].pack()
main.after(
10, # 画面切换间隔时间
draw, main, render_canvas_dict, render_heart, render_frame + 1)
def dow():
window = tk.Tk()
width = window.winfo_screenwidth()
height = window.winfo_screenheight()
a = random.randrange(0, width)
b = random.randrange(0, height)
window.title('Hello')
window.geometry("200x50" + "+" + str(a) + "+" + str(b))
tk.Label(window,text='我永远爱你', bg='Red', font=('楷体', 17), width=15, height=2).pack()
answer="no"
if __name__ == '__main__':
start_time = time.time()
i = 1
while answer == "no": # while 循环,当answer值为no时就一直循环
# 调用方法弹出"提问弹窗",标题为"回答",问题为"你是不是猪?",并判断此方法的返回值
if messagebox.askquestion("问题", "你爱我吗?") == "yes": # 如果返回值为"yes"
messagebox.showinfo("Me,too", "我也爱你。") # 就弹出"提示窗口"
answer = "yes" # 然后把answer的值改为yes,即结束循环(这里也可以直接用break)
else:
messagebox.showinfo("?", "你是傻瓜吗?,再给你1次机会。") # 就弹出"提示窗口"
i = i + 1
if i > 3:
i=i%3
messagebox.showinfo("桑心", "你失去我了,再见!")
time.sleep(5)
messagebox.showinfo("哈哈", "开玩笑的,这次不要再选错了。")
root = Tk() # 绘制Tk界面
root.title(WINDOWS_TITLE)
root.attributes("-topmost",1)
scrnW = root.winfo_screenwidth()
scrnH = root.winfo_screenheight()
width = root.winfo_width()
height = root.winfo_height() # 屏幕分辨率
left= (scrnW - width) / 2-320
top= (scrnH - height) / 2-240
root.geometry('+%d+%d' % (left, top)) # 居中
canvas_dict = {}
heart = Heart(40) # 40帧为最佳
draw(root, canvas_dict, heart) # 绘制
end_time = time.time()
root.mainloop()
相关文章:
Python-表白小程序练习
测试代码 在结果导向的今天,切勿眼高于顶,不论用任何方法能转换、拿出实际成果东西才是关键,即使一个制作很简易的程序,你想将其最终生成可运行的版本也是需要下一番功夫的。不要努力成为一个嘴炮成功者,要努力成为一个有价值的人…...
浅谈ChatGPT附免费体验地址
首先,让我来介绍一下ChatGPT是什么。ChatGPT是由OpenAI开发的大型语言模型,它代表着自然语言处理领域的最新进展。这个模型是通过大量的数据和先进的深度学习技术训练而成,具备了强大的语言理解和生成能力。 那么,ChatGPT能做些什…...

队列的使用以及模拟实现(C++版本)
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...

RV1126笔记四十一:RV1126移植LIVE555
若该文为原创文章,转载请注明原文出处。 RV1126的SDK有提供了一个librtsp.a封装好的RTSP推流库,但不开源,还有个确定延时长,所以想自己写一个RTSP的推流,但不想太麻烦,所以使用Live555。 记录下移植过程和测试结果。 live555需要用到的包有 openssl 和live555 一、 编…...

stable diffusion模型评价框架
GhostReview:全球第一套AI绘画ckpt评测框架代码 - 知乎大家好,我是_GhostInShell_,是全球AI绘画模型网站Civitai的All Time Highest Rated (全球历史最高评价) 第二名的GhostMix的作者。在上一篇文章,我主要探讨自己关于ckpt的发展方向的观点…...

电脑开机慢问题的简单处理
电脑用久了,开机时间要10-20分钟特别慢,一下介绍两种简单有效处理方式,这两种方式经测试不会影响原系统软件的使用: 方式一:禁用非必要启动项【效果不是很明显】 利用360里面的优化加速禁用启动项【禁用启动项还有其…...
SpringMVC-Rest风格
一、简介 REST(Representational State Transfer),表现形式状态转换,它是一种软件架构风格 当我们想表示一个网络资源的时候,可以使用两种方式: 传统风格资源描述形式 http://localhost/user/getById?id1 查询id为1的用户信息…...

WebGL实现透明物体(α混合)
目录 α混合 如何实现α混合 1. 开启混合功能: 2. 指定混合函数 混合函数 gl.blendFunc()函数规范 可以指定给src_factor和dst_factor的常量 混合后颜色的计算公式 加法混合 半透明的三角形(LookAtBlendedTriangl…...

RecycleView刷新功能
RecycleView刷新某一个Item,或这某一个Item中某一个View。 这样的需求,在实际的开发中是很普遍的。 在数据变化后需要刷新列表。 刷新列表有三种方式: 前两种大家应该很熟,第三中会有点陌生。 那么这三种方式,有什…...

目标检测如何演变:从区域提议和 Haar 级联到零样本技术
目录 一、说明 二、目标检测路线图 2.1 路线图(一般) 2.2 路线图(更传统的方法) 2.3 路线图(深度学习方法) 2.4 对象检测指标的改进 三、传统检测方法 3.1 维奥拉-琼斯探测器 (2001) 3.2 HOG探测器…...
聊一聊国内大模型公司,大模型面试心得、经验、感受
有着过硬的技术却无处可用是不是很苦恼呢,大家在面试时是不是也积累了一些经验呢,本文详细总结了大佬在大模型面试时的一些经验及感悟,希望对大家面试找工作有所帮助。 2023年,大模型突然国内火了起来,笔者就面了一些…...
【分布式微服务】feign 异步调用获取不到ServletRequestAttributes
公司调用接口的时候使用feign,但是服务之间还是使用了鉴权,需要通过RequestInterceptor 去传递uuid 概念 OpenFeign是一个声明式的Web服务客户端,它使得编写HTTP客户端变得更简单。在使用OpenFeign进行异步调用时,你可以通过配置来实现。但是,如果你在配置或调用过程中遇…...
c#编程里面最复杂的技术问题有哪些
C#编程中最复杂的技术问题通常涉及高级主题和复杂的应用场景。以下是一些可能被认为是C#编程中最复杂的技术问题: 1. **多线程和并发编程:** 处理多线程和并发问题涉及到锁定、线程同步、死锁避免、线程安全性和性能优化等方面的知识。编写高效且线程安…...

github代码提交过程详细介绍
1、下载github上面的代码 (1)在github网站上,找到想要下载的代码仓库界面,点击Code选项就可以看到仓库的git下载地址; (2)使用命令下载:git clone 地址; 2、配置本地git…...

Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)
在linux系统上进行多gpu卡的深度学习任务 确保已安装最新的 TensorFlow GPU 版本。 import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices(GPU)))1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通…...

Mendix中的依赖管理:npm和Maven的应用
序言 在传统java开发项目中,我们可以利用maven来管理jar包依赖,但在mendix项目开发Custom Java Action时,由于目录结构有一些差异,我们需要自行配置。同样的,在mendix项目开发Custom JavaScript Action时,…...
自定义hooks之useLastState、useSafeState
自定义hooks之useLastState、useSafeState useLastState 在某些情况下,可能需要知道状态的历史值,例如,希望在状态变化时执行某些操作,但又需要访问上一个状态的值,以便进行比较或其他操作。自定义 React Hook 可以帮…...
前端判断: []+[], []+{}, {}+[], {}+{}
本质: 二元操作符规则 一般判断规则: 如果操作数是对象,则对象会转换为原始值如果其中一个操作数是字符串的话,另一个操作数也会转换成字符串,进行字符串拼接否则,两个操作数都将转换成数字或NaN,进行加法操作 转为原始数据类型的值的方法: Symbol.ToPrimitiveObject.protot…...
el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位)
el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位) 我把封装指令的代码放在了main.js,代码如下 // 金额展示千分位 Vue.directive("thousands", {inserted: function(el, binding) {// debugger// 获取input节点if (el.tagName.toLocaleUppe…...

一篇博客学会系列(2)—— C语言中的自定义类型 :结构体、位段、枚举、联合体
目录 前言 1、结构体 1.1、结构体类型的声明 1.2、特殊的结构体类型声明 1.3、结构体的自引用 1.4、结构体的定义和初始化 1.5、结构体成员变量的调用 1.6、结构体内存对齐 1.6.1、offsetof 1.6.2、结构体大小的计算 1.6.3、为什么存在内存对齐? 1.7、…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...

AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...