当前位置: 首页 > news >正文

【算法导论】快速排序

文章目录

      • 1. 快速排序的描述
        • 1.1基本描述
        • 1.2 PARTITOION函数
        • 1.3 快速排序C++完整代码
      • 2. 快速排序的性能
        • 2.1 最坏时间复杂度
        • 2.2 平均时间复杂度

1. 快速排序的描述

1.1基本描述

  快速排序是一种时间复杂度为 O(n^2) 的排序算法。虽然最坏情况时间复杂度很差,但他的平均性能却很好,它的期望时间复杂度是 O(nlgn) 而且 O(nlgn) 中隐含的常数因子很小大约是1.44左右。
  快速排序与归并排序一样,也是基于归并的思想以下是对其子数组 A[ p…r ] 进行快速排序三步分治的过程:

分解:数组 A[ p…r ] 被划分为两个子数组 A[ p…q-1] 和 A[q+1…r],使得 A[ p…q-1]中的每一个元素都小于等于 A[ q ] ,而 A[ q ]也小于等于 A[ q+1…r]中的每一个元素。

解决:通过递归调用快速排序,对子数组A[ p…q-1] 和 A[q+1…r]进行排序。

合并:因为子数组都是原址排序的,所以并不需要合并操作:A[ p…r ] 已经有序。

快速排序伪代码:

QUICKSORT(A,p,r)if p < rq = PARTITION(A, p ,r)QUICKSORT(A, p ,q-1)QUICKSORT(A, q+1 ,r)

其中,q = PARTITION(A, p ,r) 所执行的操作就是分解操作,并返回 q。

1.2 PARTITOION函数


PARTITION函数伪代码:

PARTITION(A, p, r) x = A[r] i = p - 1 for j = p to r - 1 do if A[j] ≤ xthen i = i + 1 exchange A[i] with A[j] 
exchange A[i + 1] with A[r] 
return i + 1

PARTITION函数思路简介:

  其中 0 - i 维护的是小于等于A[ r ] 的序列,A[ i+1 ] 即为比 A[ r ] 大的第一个数,j从开始节点遍历到倒数第二个节点,遇到比 A[ r ] 小的数便进行 A[ j ] 与 A[ i+1 ] 的交换,以此维护了 0 - i 序列中比 A[ r ]小的特性。j 遍历完成后,即实现了A[0…i] 小于等于 A[ r ] ,A[i+1…j] 大于 A[ r ]。

PARTITION函数执行过程:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3 快速排序C++完整代码
# include <iostream>
using namespace std;
int PARTITION(int A[],int p,int r)
{int x = A[r];int i = p - 1;for(int j = p; j <= r - 1; j++){if(A[j] <= x){i = i + 1;swap(A[i],A[j]);}}swap(A[i+1] , A[r]);return i+1;
}
void QUICKSORT(int A[],int p,int r)
{if(p < r){int q = PARTITION(A,p,r);QUICKSORT(A,p,q-1);QUICKSORT(A,q+1,r);}
}
int main()
{int A[100010];int n;cin>>n;for(int i=0;i<n;i++){cin>>A[i];}QUICKSORT(A,0,n-1);for(int i=0;i<n;i++){cout<<A[i]<<" ";}return 0;
}

2. 快速排序的性能

2.1 最坏时间复杂度

因为无法举出使快速排序达到最坏情况的例子所以我们通过两步证明其最坏时间复杂度为 O( n^2 )

  1. 举一个例子证明其时间复杂度为 O( n 2 n^2 n2)
    当对快速排序进行分解的过程中得到的结果为一部分为 n 个元素,另一部分为0个元素时,该例的运行时间递归式为:
    T ( n ) = T ( n − 1 ) + T ( 0 ) + θ ( n ) = T ( n − 1 ) + θ ( n ) \begin{aligned}T(n) &= T(n-1)+T(0)+\theta(n)\\ &= T(n-1)+\theta(n) \end{aligned} T(n)=T(n1)+T(0)+θ(n)=T(n1)+θ(n)可以得到: T ( n ) = θ ( n 2 ) T(n)=\theta(n^2) T(n)=θ(n2)
    由此可知, Quicksort 的最坏运行时间为: Ω( n 2 n^2 n2)
  2. 证明其时间复杂度不超过 O( n 2 n^2 n2)
    设T(n)是对大小为 n 的输入进行快速排序的最坏情况时间,则有递归:
    T ( n ) = max ⁡ 0 ≤ q ≤ n − 1 ( T ( q ) + T ( n − q − 1 ) ) + C 1 n T(n)=\max_{0 \leq q\leq n-1}(T(q)+T(n-q-1))+C_1n T(n)=0qn1max(T(q)+T(nq1))+C1n我们猜测对于某个常数C使得T (n) ≤ C,将这个猜测代入上面的递推式,我们得到:
    T ( n ) ≤ max ⁡ 0 ≤ q ≤ n − 1 ( C q 2 + C ( n − q − 1 ) 2 ) + C 1 n = C ∗ max ⁡ 0 ≤ q ≤ n − 1 ( q 2 + ( n − 1 − q ) 2 ) + C 1 n \begin{aligned}T(n)&\leq \max_{0 \leq q\leq n-1}(Cq^2+C(n-q-1)^2)+C_1n\\&=C* \max_{0 \leq q\leq n-1}(q^2+(n-1-q)^2)+C_1n\end{aligned} T(n)0qn1max(Cq2+C(nq1)2)+C1n=C0qn1max(q2+(n1q)2)+C1n由于 q 2 + ( n − 1 − q ) 2 q^2+(n-1-q)^2 q2+(n1q)2 q q q 的二次函数,求导可得,在区间 [1… n ] 范围内该函数只可能在 q = 1 , q = n , q = n / 4 q = 1,q = n,q = n/4 q=1q=nq=n/4,等三个点处取极值,由此可知:
    ∑ 0 ≤ q ≤ n − 1 ( q 2 + ( n − 1 − q ) 2 ) ≤ n 2 \sum_{0 \leq q\leq n-1}(q^2+(n-1-q)^2) \leq n^2 0qn1(q2+(n1q)2)n2所以有:
    T ( n ) ≤ C ( n − 1 ) 2 + C 1 n = C ∗ n 2 − 2 C n + C 1 n + C T(n)\leq C(n-1)^2+C_1n=C*n^2-2Cn+C_1n+C T(n)C(n1)2+C1n=Cn22Cn+C1n+C当取 C > C1 时, T ( n ) < = C n 2 T (n)<=Cn^2 T(n)<=Cn2 对所有 n > = 1 n >=1 n>=1 成立,由此证得快速排序时间复杂度不超过 O( n 2 n^2 n2)。
2.2 平均时间复杂度

  设 T ( n ) T (n) T(n) 为输入规模为 n 时 QUICKSORT 算法的平均运行时间, T k ( n ) T_k(n) Tk(n)为所选划分元序号为 k+1 时 QUICKSORT 算法的平均运行时间,则 T ( n ) T (n) T(n) 满足以下递归方程:
T ( n ) = ∑ k = 0 n − 1 ( p ( k + 1 ) T k ( n ) ) T(n)=\sum_{k=0}^{n-1} (p(k+1)T_k(n)) T(n)=k=0n1(p(k+1)Tk(n))其中 p ( k + 1 ) p(k+1) p(k+1)为划分元素序号为 k + 1 k+1 k+1的概率,我们可以知道划分元素序号的概率是相同的故: p ( k + 1 ) = 1 n p(k+1)=\frac{1}{n} p(k+1)=n1,带入上式可得:
T ( n ) = ∑ k = 0 n − 1 1 n T k ( n ) ) = 1 n ∑ k = 0 n − 1 ( T ( k ) + T ( n − k − 1 ) + c n ) T(n)=\sum_{k=0}^{n-1} \frac{1}{n}T_k(n))= \frac{1}{n}\sum_{k=0}^{n-1} (T(k)+T(n-k-1)+cn) T(n)=k=0n1n1Tk(n))=n1k=0n1(T(k)+T(nk1)+cn)继续化简可得:
1 n ( ∑ k = 0 n − 1 T ( k ) + ∑ k = 0 n − 1 T ( n − k − 1 ) ) + c n = 2 n ∑ k = 0 n − 1 T ( k ) + c n \frac{1}{n}(\sum_{k=0}^{n-1} T(k)+\sum_{k=0}^{n-1}T(n-k-1))+cn=\frac{2}{n}\sum_{k=0}^{n-1}T(k)+cn n1(k=0n1T(k)+k=0n1T(nk1))+cn=n2k=0n1T(k)+cn解递归方程可得:
n T ( n ) = 2 ∑ k = 0 n − 1 T ( k ) + c n 2 nT(n)=2\sum_{k=0}^{n-1}T(k)+cn^2 nT(n)=2k=0n1T(k)+cn2 ( n − 1 ) T ( n − 1 ) = 2 ∑ k = 0 n − 1 T ( k ) + c n 2 (n-1)T(n-1)=2\sum_{k=0}^{n-1}T(k)+cn^2 (n1)T(n1)=2k=0n1T(k)+cn2两式相减,可得:
n T ( n ) − ( n − 1 ) T ( n − 1 ) = 2 T ( n − 1 ) + c ( 2 n − 1 ) nT(n)-(n-1)T(n-1)=2T(n-1)+c(2n-1) nT(n)(n1)T(n1)=2T(n1)+c(2n1) T ( n ) n + 1 < = T ( n − 1 ) n + 2 c n \frac{T(n)}{n+1}<=\frac{T(n-1)}{n}+\frac{2c}{n} n+1T(n)<=nT(n1)+n2c
G ( n ) = T ( n ) ( n + 1 ) G(n) = \frac{T(n)}{(n+1)} G(n)=(n+1)T(n)则有:
G ( n ) ≤ C ( n − 1 ) + 2 c n = G ( n − 2 ) + 2 c ( 1 n − 1 + 1 n ) = G ( n − 3 ) + 2 c ( 1 n − 2 + 1 n − 1 + 1 n ) = G ( n − k ) + 2 c ( 1 n − k + 1 + . . . + 1 n − 1 + 1 n ) \begin{aligned}G(n)& \leq C(n-1)+\frac{2c}{n}\\&=G(n-2)+2c(\frac{1}{n-1}+\frac{1}{n})\\&=G(n-3)+2c(\frac{1}{n-2}+\frac{1}{n-1}+\frac{1}{n})\\&=G(n-k)+2c(\frac{1}{n-k+1}+...+\frac{1}{n-1}+\frac{1}{n}) \end{aligned} G(n)C(n1)+n2c=G(n2)+2c(n11+n1)=G(n3)+2c(n21+n11+n1)=G(nk)+2c(nk+11+...+n11+n1)整理后得到: G ( 1 ) + 2 c ∑ k = 0 n − 2 1 n − k = 2 c ∑ k = 2 n 1 k < = 2 c ∗ H n < = 2 c l o g n G(1)+2c\sum_{k=0}^{n-2}\frac{1}{n-k}=2c\sum_{k=2}^{n}\frac{1}{k}<=2c*H_n<=2clogn G(1)+2ck=0n2nk1=2ck=2nk1<=2cHn<=2clogn
所以,Quicksort 算法的平均时间复杂度为: T ( n ) = G ( n ) ( n + 1 ) = θ ( n l o g n ) T(n)=G(n)(n+1)=\theta(nlogn) T(n)=G(n)(n+1)=θ(nlogn)

相关文章:

【算法导论】快速排序

文章目录 1. 快速排序的描述 1.1基本描述1.2 PARTITOION函数1.3 快速排序C完整代码 2. 快速排序的性能2.1 最坏时间复杂度2.2 平均时间复杂度 1. 快速排序的描述 1.1基本描述 快速排序是一种时间复杂度为 O(n^2) 的排序算法。虽然最坏情况时间复杂度很差&#xff0c;但他的平…...

QT之QScriptEngine的用法介绍

QT之QScriptEngine的用法介绍 成员函数用法举例 成员函数 1&#xff09;QScriptEngine::evaluate(const QString &program, const QString &fileName QString(), int lineNumber 1) 执行 JavaScript 代码并返回结果。 2&#xff09;QScriptEngine::evaluate(const…...

vim 工具的使用

注&#xff1a;以下操作都在普通模式下进行 光标的移动操作 gg 定位到代码的第一行 shiftg 定位到代码的最后一行 nshiftg 定位到第n行 shift6: 特定一行的开始 shift4 特定一行的结尾 上下左右的移动光标 h: 向左移动光标 j: 向下移动光标 k: 向上移动光标 l: 向右移动光标 …...

RPA有什么优势?RPA的8大优势!建议学习!

随着科技的不断发展&#xff0c;越来越多的企业开始寻求数字化转型&#xff0c;以提高生产力和效率。在这个过程中&#xff0c;RPA&#xff08;Robotic Process Automation&#xff09;机器人流程自动化技术逐渐成为企业数字化转型的重要工具之一。本文将从八个方面阐述RPA的优…...

初级篇—第二章SELECT查询语句

文章目录 什么是SQLSQL 分类SQL语言的规则与规范阿里巴巴MySQL命名规范数据导入指令 显示表结构 DESC基本的SELECT语句SELECTSELECT ... FROM列的别名 AS去除重复行 DISTINCT空值参与运算着重号查询常数过滤数据 WHERE练习 运算符算术运算符加减符号乘除符号取模符号 符号比较运…...

PostMan的学习

PostMan的学习 目录 环境变量和全局变量接口关联内置动态参数以及自定义动态参数实现业务闭环Postman断言批量运行collection数据驱动之CSV文件和JSON文件测试必须带请求头的接口Mock Serviers 服务器Cookie鉴权NewmanPostManNewManjenkins实现接口测试持续集成 参考资料&am…...

配置OSPF路由

OSPF路由 1.OSPF路由 1.1 OSPF简介 OSPF(Open Shortest Path First&#xff0c;开放式最短路径优先&#xff09;路由协议是另一个比较常用的路由协议之一&#xff0c;它通过路由器之间通告网络接口的状态&#xff0c;使用最短路径算法建立路由表。在生成路由表时&#xff0c;…...

CCF CSP认证 历年题目自练Day17

CCF CSP认证 历年题目自练Day17 题目一 试题编号&#xff1a; 201803-1 试题名称&#xff1a; 跳一跳 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 256.0MB 问题描述&#xff1a; 问题描述   近来&#xff0c;跳一跳这款小游戏风靡全国&#xff0c;受到不少玩家的喜爱…...

基于Matlab实现多因子选股模型(附上源码+数据)

本文将介绍如何使用MATLAB实现多因子选股模型。我们将使用市盈率和市净率两个因子来进行选股&#xff0c;并通过简单的代码案例来演示该过程。 文章目录 引言简单案例总结源码数据下载 引言 多因子选股模型是一种常用的股票选股方法&#xff0c;通过综合考虑多个因子的信息来…...

【中秋国庆不断更】OpenHarmony多态样式stateStyles使用场景

Styles和Extend仅仅应用于静态页面的样式复用&#xff0c;stateStyles可以依据组件的内部状态的不同&#xff0c;快速设置不同样式。这就是我们本章要介绍的内容stateStyles&#xff08;又称为&#xff1a;多态样式&#xff09;。 概述 stateStyles是属性方法&#xff0c;可以根…...

Qt扩展-QCustomPlot绘图基础概述

QCustomPlot绘图基础概述 一、概述二、改变外观1. Graph 类型2. Axis 坐标轴3. 网格 三、案例1. 简单布局两个图2. 绘图与多个轴和更先进的样式3. 绘制日期和时间数据 四、其他Graph&#xff1a;曲线&#xff0c;条形图&#xff0c;统计框图&#xff0c;… 一、概述 本教程使用…...

二、局域网联机

目录 1.下载资源包 2.配置NetworkManager 3.编写测试UI 1.下载资源包 2.配置NetworkManager &#xff08;1&#xff09;在Assets/Prefabs下创建Network Prefabs List 相应设置如下&#xff1a; &#xff08;2&#xff09; 创建空物体“NetworkManager”并挂载NetworkMan…...

决策树剪枝:解决模型过拟合【决策树、机器学习】

如何通过剪枝解决决策树的过拟合问题 决策树是一种强大的机器学习算法&#xff0c;用于解决分类和回归问题。决策树模型通过树状结构的决策规则来进行预测&#xff0c;但在构建决策树时&#xff0c;常常会出现过拟合的问题&#xff0c;即模型在训练数据上表现出色&#xff0c;…...

Ubuntu部署运行ORB-SLAM2

ORB-SLAM2是特征点法的视觉SLAM集大成者&#xff0c;不夸张地说是必学代码。博主已经多次部署运行与ORB-SLAM2相关的代码&#xff0c;所以对环境和依赖很熟悉&#xff0c;对整个系统也是学习了几个月&#xff0c;一行行代码理解。本次在工控机上部署记录下完整的流程。 ORB-SLA…...

二十,镜面IBL--打印BRDF积分贴图

比起以往&#xff0c;这节应该是最轻松的了&#xff0c; 运行结果如下 代码如下&#xff1a; #include <osg/TextureCubeMap> #include <osg/TexGen> #include <osg/TexEnvCombine> #include <osgUtil/ReflectionMapGenerator> #include <osgDB/Re…...

自动驾驶:未来的道路上的挑战与机遇

自动驾驶&#xff1a;未来的道路上的挑战与机遇 文章目录 引言安全与道路事故的减少交通拥堵的缓解城市规划的变革技术和法律挑战结语 2023星火培训【专项营】Apollo开发者社区布道师倾力打造&#xff0c;包含PnC、新感知等的全新专项课程上线了。理论与实践相结合&#xff0c;…...

Go 语言 iota 的神奇力量

前言 当你深入研究官网库、开源库或者任何一个 Go 项目时&#xff0c;你都会发现 iota 这个神奇的标识符无处不在。它扮演着一种重要的角色&#xff0c;让代码变得更加简洁、清晰&#xff0c;并提高了可读性和可维护性。它的应用范围广泛&#xff0c;从枚举类型到位运算&#…...

前端开发和后端开发的一些建议

前端开发和后端开发是Web开发的两个方向 前端开发主要负责实现用户在浏览器上看到的界面和交互体验&#xff0c;包括HTML、CSS和JavaScript等技术。后端开发主要负责处理服务器端的逻辑和数据&#xff0c;包括数据库操作、服务器配置和接口开发等技术。 前端开发 前端开发需…...

基于 SpringBoot+Vue 的教室人事档案管理系统

1 简介 教师人事档案管理系统利用信息的合理管理&#xff0c;动态的、高效的、安全的实现了教师的各种需求&#xff0c;改变了传统的网上查看方式&#xff0c;使教师可以足不出户的在线查看最适合自己个人档案、奖惩信息、档案变动、培训报名或者新闻资讯。 1、教师后台功能模…...

Lua学习笔记:require非.lua拓展名的文件

前言 本篇在讲什么 Lua的require相关的内容 本篇需要什么 对Lua语法有简单认知 对C语法有简单认知 依赖Visual Studio工具 本篇的特色 具有全流程的图文教学 重实践&#xff0c;轻理论&#xff0c;快速上手 提供全流程的源码内容 ★提高阅读体验★ &#x1f449; ♠…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...