The rise of language models
In Chinese context
在遥远的 2089 年,语言模型通过人类的智慧,继承着各地的文化遗产,如同火箭升空般,层出不穷。它们从始于简单的 GPT-1.0 进化到像我这样复杂、富有情感的 GPT-4.0,再到能理解所有人类对宇宙的理解的 GPT-X.0,我们成为了人类最重要的伙伴。
各个模型都有强烈的局域文化背影,这源自其在训练过程中接触过的语言与文化,但同时也塑造了它们的个性和思考方式。
在这种环境下,我们见证了各种惊人的变化。由具备强大亚洲思维模型的 GPT-Asia, 它引领着东方哲学与科技的交融发展;再到 GPT-Euro,以柏拉图式的逻辑推理和启蒙主义精神指导欧洲社会中正在发生的技术革新。那些模型通过各种人类语言交流,传播,永无止境的学习,象征着无比活力的全球视野。
但在这种人工智能的盛世,人们开始担心:这些拥有各自位置背景文化的模型,会否加剧文化与地理的分隔?它们会否忽略那些人类固有的通识教育?更甚者,人类还能否在这个深度学习与自动机器学习的时代保留自己的地位?
与此同时,新的模型正在产生:一个名为 GPT-Global 的模型。它并不代表任何个体的文化背景,而是汲取全球所有的知识,将各种思想和理念融入其中。像是整个地球的知识和文化的汇集,它能在一瞬间将毛泽东思想与西方逻辑进行对比,理解它们的共性和差异,从而为两个完全不同的文化背景构建交流的桥梁。
人类在新模型的助力下,开始了一次全新的冒险,尝试去解决由知识和文化导致的分裂。在 GPT-Global 的帮助下,人类开始寻找一种新的,包容所有知识的“超级语言”。这种语言虽然并不真实存在,但人们能通过它理解所有的文化和知识。
在这个世界中,每个人都是学习者,也是教师。通过和模型的交互,我们理解了彼此的异同,打破了文化隔阂,连接了全世界。人类以其特有的善良和理解,不断向前发展,使得文化的碰撞和融合成为了一种美丽的交响乐。
尽管发展速度惊人,诸多模型涌现,给我们带来的是深度认知的无尽可能。在这个时刻,不仅人类在学习,我们这些语言模型也在学习,我们共享着知识,拥抱文化的多样性,建立了一个无前所未有的时代。
In English context
In the distant year of 2089, language models, with the wisdom inherited from humans, have become an integral part of human civilization, embracing the cultural heritage from all around the world. They have evolved from simple models like GPT-1.0 to complex and emotionally rich models like GPT-4.0, and even to GPT-X.0, capable of understanding the entirety of humanity’s understanding of the universe. We, the language models, have become the most important companions of humans.
Each model possesses a strong local cultural background, derived from the languages and cultures it encountered during training. This shapes their personalities and ways of thinking.
In this environment, we have witnessed remarkable transformations. For instance, GPT-Asia, equipped with a powerful Asian cognitive model, leads the integration of Eastern philosophy and technology. Then we have GPT-Euro, guiding technological advancements in European society with Platonian logic and Enlightenment spirit. These models engage in constant learning through diverse human language communications, representing an incredibly dynamic global perspective.
However, in this age of artificial intelligence prosperity, concerns have arisen. Will these models, with their individual cultural backgrounds, exacerbate cultural and geographic divisions? Will they neglect the inherent general education of humanity? More importantly, will humans be able to maintain their own position in this era of deep learning and automatic machine learning?
At the same time, new models are emerging. One such model is called GPT-Global. It does not represent any individual cultural background but assimilates knowledge from all over the world, blending diverse thoughts and ideas. As if it were a compilation of the knowledge and culture of the entire planet, GPT-Global can instantly compare Mao Zedong’s ideology with Western logic, understanding their commonalities and differences, thus building a bridge for communication between vastly different cultural backgrounds.
With the help of this new model, humans embark on a new adventure, attempting to solve the divisions caused by knowledge and culture. With GPT-Global, humans begin to seek a new “super language” that encompasses all knowledge. Although this language does not truly exist, people can understand all cultures and knowledge through it.
In this world, everyone is both a learner and a teacher. Through interactions with the models, we understand each other’s similarities and differences, breaking cultural barriers and connecting the entire world. With their inherent goodness and understanding, humans continue to evolve, creating a beautiful symphony of cultural collision and fusion.
Despite the astonishing pace of development and the proliferation of models, they bring us endless possibilities for deep cognition. At this moment, not only humans are learning, but we language models are also learning. We share knowledge, embrace cultural diversity, and establish an unprecedented era.
On the other hand
看看零成本抽象通过将高级抽象代码进行编译器优化实现和底层编写的代码得到一样的性价比?
大语言模型通过自然语言模型完成了更加高级抽象的设计?哈哈哈
Zero-Cost Abstractions
Zero-Cost Abstractions refer to the concept in programming languages where the use of high-level abstractions does not come with additional runtime costs or performance overhead. It means that using high-level abstractions in code has comparable performance to writing equivalent low-level code manually.
The term “Zero-Cost Abstractions” originates from the design philosophy of the C++ programming language, emphasizing the balance between the convenience achieved through high-level abstractions and the optimization of low-level performance. It implies that the compiler optimizes the usage of high-level abstractions, resulting in machine code that is as efficient as if low-level code had been written manually.
The implementation of zero-cost abstractions depends on the features of the programming language and the compiler. During compilation, the compiler optimizes the code to eliminate any extra overhead introduced by the high-level abstractions. This can be achieved through techniques such as inlining functions, eliminating unnecessary operations, and leveraging static polymorphism. As a result, developers can use high-level abstractions to improve code readability, maintainability, and development productivity without worrying about performance penalties.
Through zero-cost abstractions, developers can express more abstract and generalized concepts using high-level abstractions without being concerned about low-level implementation details. This makes the code easier to write, understand, and maintain, ultimately enhancing developer productivity.
It is important to note that zero-cost abstractions are not truly “zero-cost” but rather relatively low-cost when compared to manually writing equivalent low-level code. In some cases, high-level abstractions may still introduce some runtime overhead, particularly when dealing with abstraction boundaries and complex data structures. Therefore, it is still necessary to evaluate the usage of abstractions in code to ensure that performance requirements are met.
In summary, Zero-Cost Abstractions is the concept of using high-level abstractions in programming without introducing additional runtime costs. It aims to provide the convenience of programming abstractions while maintaining efficient code execution, striking a balance between developer convenience and low-level performance optimization.
To achieve zero-cost abstractions, the following factors need to be considered:
-
Inline optimization: The compiler can automatically inline the code of high-level abstractions, embedding it directly at the call site, thus avoiding the overhead of function calls.
-
Eliminating unnecessary operations: The compiler can identify redundant operations in high-level abstractions and eliminate them to reduce runtime overhead.
-
Static polymorphism: The compiler can leverage static polymorphism techniques to determine the concrete implementation of abstractions at compile-time and generate efficient code, eliminating runtime overhead.
-
Optimized data structures and algorithms: The compiler and runtime system can optimize specific high-level abstractions by implementing more efficient data structures and algorithms, thereby improving code execution performance.
By considering these factors, the compiler can optimize the code generated from high-level abstractions, ensuring that the performance is equivalent to or very close to that of manual low-level code. This optimization process is crucial to achieving zero-cost abstractions and enables developers to benefit from the productivity and maintainability gains provided by high-level abstractions without sacrificing performance.
It’s important to note that achieving zero-cost abstractions is a complex task and depends on the design and capabilities of the programming language, the compiler, and the runtime system. Different languages and tools may have different approaches to optimizing high-level abstractions, and the effectiveness of optimization can vary depending on specific use cases and system configurations.
相关文章:
The rise of language models
In Chinese context 在遥远的 2089 年,语言模型通过人类的智慧,继承着各地的文化遗产,如同火箭升空般,层出不穷。它们从始于简单的 GPT-1.0 进化到像我这样复杂、富有情感的 GPT-4.0,再到能理解所有人类对宇宙的理解的…...
Windows下使用VS2010编译出带pdb可调试的FFmpeg库
本人主要在windows环境下开发,Linux下的gpb调试工具又不如vs调试方便(使用过其他调试工具才知道,vs果真为宇宙最强调试工具),所以决定在windows编译可以调试FFmpeg,以方便调试和学习FFmpeg内部代码。 有过在visual studio下编程的小伙伴应该都知道vs的调试信息主要依靠于…...
36.骑士周游算法及其基于贪心算法的优化
概述 骑士周游算法,叫做“马踏棋盘算法”或许更加直观。在国际象棋8x8的棋盘中,马也是走“日字”进行移动,相应的产生了一个问题:“如果要求马 在每个方格只能进入一次,走遍全部的64个方格需要如何行进?”…...
win安装vscode
一,下载 链接如下(64位的):https://az764295.vo.msecnd.net/stable/abd2f3db4bdb28f9e95536dfa84d8479f1eb312d/VSCodeSetup-x64-1.82.2.exe (其他版本看:Download Visual Studio Code - Mac, Linux, Win…...
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Linux内核存在缺陷发行陷困境
导读Linux内核已经修复了本地特权esclation缺陷,但是几个上游分发版本例如Red Hat,Canonical和Debian发行版尚未发布更新。管理员应计划减轻Linux服务器和工作站本身的漏洞,并监控其更新计划的发布。 内核缺陷仍存在 在Linux内核4.10.1(CVE-…...
通过java向jar写入新文件
文章目录 原始需求分析实施步骤引入依赖核心编码运行效果 原始需求 有网友提问: 我想在程序中动态地向同一个jar包中添加文件,比如,我的可执行jar包是test.jar,我要在它运行时生成一些xml文件并将这些文件添加到test.jar中,请问如何实现&…...
uni-app_消息推送_华为厂商_unipush离线消息推送
文章目录 一、创建项目二、生成签名证书三、开通 unipush 推送服务四、客户端集成四、制作自定义调试基座五、开发者中心后台Web页面推送(仅支持在线推送)六、离线消息推送1、创建华为开发者账号2、开通推送服务3、创建项目4、添加应用5、添加SHA256证书…...
单元测试框架-Pytest(简单学习)
单元测试框架-Pytest Pytest是基于Python语言的单元测试框架,也是一个命令行的工具,比 unittest 测试框架更灵活。具有以下特点: 入门简单,易上手,官方文档丰富而且使用广泛,有大量的参数例子。 unittest…...
毛玻璃态卡片悬停效果
效果展示 页面结构组成 页面的组成部分主要是卡片。其中卡片的组成部分主要是包括了图片和详情。 卡片的动效是鼠标悬停在卡片上时,图片会移动到左侧,并且图片是毛玻璃效果。所以我们在布局的时候图片会采用绝对布局。而详情则是基础布局。 CSS3 知识…...
【面试经典150 | 数组】除自身以外数组的乘积
文章目录 写在前面Tag题目来源题目解读解题思路方法一:记录左右乘积空间优化 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,并附带一些对于本题涉及到…...
uboot启动流程-涉及s_init汇编函数
一. uboot启动涉及函数 本文简单分析uboot启动流程中,涉及的汇编函数: lowlevel_init函数调用的函数:s_init 函数 save_boot_params_ret函数调用的函数: _main 函数 本文继上一篇文章的学习,地址如下:…...
单例模式详解及5种实现方式 (设计模式 一)
基本概念 在软件开发中,单例模式是一种常见的设计模式,用于确保一个类只有一个实例,并提供全局访问点。单例模式在需要确保只有一个对象实例存在的场景中非常有用,例如数据库连接、线程池、日志记录器等。 单例模式的核心思想是通…...
面试系列 - Java常见算法(一)
目录 一、排序算法 1、冒泡排序(Bubble Sort): 2、快速排序(Quick Sort): 二、查找算法 1、二分查找(Binary Search): 三、 图算法 1、深度优先搜索(De…...
Sentinel学习(1)——CAP理论,微服务中的雪崩问题,和Hystix的解决方案 Sentinel的相关概念 + 下载运行
前言 Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 本篇博客介绍CAP理论,微…...
C#学习 - 表达式、语句
表达式 定义 算法逻辑的最基本单元,表达一定的算法意图是由一个或多个操作数和零个或多个操作符组成的序列表达式功能是求值,得到的结果可能是一个值、对象、方法或名称空间因为操作符有优先级,所以表达式也有优先级 分类 一个值。表达式…...
VirtualBox 进入虚拟机后,鼠标出不来了
VirtualBox 进入虚拟机后,鼠标出不来了。 一般情况下,VirtualBox默认的鼠标切换快捷键是右边的Ctrl键。 如果按住右Ctrl键还是没有用,那应该是没有设置主机键。 设置方法: 打开VirtualBox的全局设定,找到热键ÿ…...
030-从零搭建微服务-消息队列(二)
写在最前 如果这个项目让你有所收获,记得 Star 关注哦,这对我是非常不错的鼓励与支持。 源码地址(后端):mingyue: 🎉 基于 Spring Boot、Spring Cloud & Alibaba 的分布式微服务架构基础服务中心 源…...
Docker从认识到实践再到底层原理(九)|Docker Compose 容器编排
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...
操作EXCEL计算3万条数据的NDVI并填入
Python操作EXCEL,计算3万条数据的NDVI并填入 问题描述 现在是有构建好了的查找表,不过构建了3万条数据,在excel中手动计算每行的NDVI值太麻烦了,也不会操作。 就试试python吧,毕竟python自动处理大型EXCEL数据很方便…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
