当前位置: 首页 > news >正文

【微服务保护】

文章目录

  • Sentinel
  • 流量控制
    • 流控模式
    • 流控效果
  • 隔离和降级
    • 线程隔离
    • 熔断降级
  • 授权规则和规则持久化

微服务雪崩问题:
微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。服务D有 故障进而导致服务A有故障,进而导致服务雪崩。
在这里插入图片描述
解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
  • 仓壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
  • 断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
  • 流量控制:限制业务访问的QPS,避免服务因流量的突增而故障

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

Sentinel

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。

簇点链路:当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。
在这里插入图片描述

流控熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制
  • 降级:降级熔断
  • 热点:热点参数限流,是限流的一种
  • 授权:请求的权限控制

流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务
  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
    在这里插入图片描述

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务
  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

在这里插入图片描述
在这里插入图片描述
总结:

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流


流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

排队等待:
当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

总结:

  • 快速失败:QPS超过阈值时,拒绝新的请求
  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。
  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

热点参数限流
之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值
在这里插入图片描述
刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

隔离和降级

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。

而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

线程隔离:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。

熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了


可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。

而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。

FeignClient整合Sentinel
修改OrderService的application.yml文件,开启Feign的Sentinel功能:
在这里插入图片描述

编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑

给FeignClient编写失败后的降级逻辑

①方式一:FallbackClass,无法对远程调用的异常做处理

②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
总结
Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)
  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true
  • 给FeignClient编写FallbackFactory并注册为Bean
  • 将FallbackFactory配置到FeignClient

线程隔离

线程隔离有两种方式实现:

  • 线程池隔离
  • 信号量隔离(Sentinel默认采用)

在这里插入图片描述
线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。
在这里插入图片描述
sentinel的线程隔离
在这里插入图片描述


总结

线程隔离的两种手段是?

  • 信号量隔离
  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数
在这里插入图片描述
在这里插入图片描述

授权规则和规则持久化

授权规则可以对请求方来源做判断和控制。

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问
  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

在这里插入图片描述
案例

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

自定义异常结果
默认情况下,发生限流降级授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:
在这里插入图片描述
下面,我们就在order-service定义一个自定义异常处理类:

package cn.itcast.order.sentinel;import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {String msg = "未知异常";int status = 429;if (e instanceof FlowException) {msg = "请求被限流了";} else if (e instanceof ParamFlowException) {msg = "请求被热点参数限流";} else if (e instanceof DegradeException) {msg = "请求被降级了";} else if (e instanceof AuthorityException) {msg = "没有权限访问";status = 401;}response.setContentType("application/json;charset=utf-8");response.setStatus(status);response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");}
}

在这里插入图片描述
规则持久化:
现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。
规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

在这里插入图片描述
在这里插入图片描述

相关文章:

【微服务保护】

文章目录 Sentinel流量控制流控模式流控效果 隔离和降级线程隔离熔断降级 授权规则和规则持久化 微服务雪崩问题: 微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。服务D有 故障进而导致服务A有故障,进而导…...

【MATLAB第78期】基于MATLAB的VMD-SSA-LSTM麻雀算法优化LSTM时间序列预测模型

【MATLAB第78期】基于MATLAB的VMD-SSA-LSTM麻雀算法优化LSTM时间序列预测模型 一、LSTM data xlsread(数据集.xlsx);% [x,y]data_process(data,15);%前15个时刻 预测下一个时刻 %归一化 [xs,mappingx]mapminmax(x,0,1);xxs; [ys,mappingy]mapminmax(y,0,1);yys; %划分数据 n…...

分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测

分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测 目录 分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结…...

唤醒手腕 Matlab 游戏编程常用技术知识点详细教程(更新中)

Figure 窗口初始化 figure 使用默认属性值创建一个新的图窗窗口。生成的图窗为当前图窗。f figure(___) 返回 Figure 对象。可使用 f 在创建图窗后查询或修改其属性。figure(f) 将 f 指定的图窗作为当前图窗,并将其显示在其他所有图窗的上面。 figure(n) 查找 Nu…...

2023八股每日一题(九月份)

9月13日 Q:JDK、JRE、JVM之间的区别 A: JDK(Java SE Development Kit),Java标准开发包,它提供了编译、运⾏Java程序所需的各种⼯具和资源,包括Java编译器、Java运⾏时环境,以及常⽤的Java类库等JRE( Java…...

分布式链路追踪--SkyWalking7.0.0+es7.0.0

分布式链路追踪–SkyWalking ​ 微服务的出现,的确解决了一些业务痛点,但是也造成了新的问题比如随着调用链的拉长,如果想要知道请求为什么这么慢,这个请求到底经历了哪些环节,又依赖了哪些东西,在微服务架…...

web:[RoarCTF 2019]Easy Calc

题目 进入页面是一个计算器的页面 随便试了一下 查看源代码看看有什么有用的信息 访问一下这个calc.php 进行代码审计 <?php error_reporting(0); if(!isset($_GET[num])){show_source(__FILE__); }else{$str $_GET[num];$blacklist [ , \t, \r, \n,\, ", , \[, \]…...

【Java每日一题】— —第十七题:杨辉三角(等腰三角形)。(2023.10.01)

&#x1f578;️Hollow&#xff0c;各位小伙伴&#xff0c;今天我们要做的是第十七题。 &#x1f3af;问题&#xff1a; 第一步:动态初始化 第二步:求各元素的值 第三步:遍历输出 测试结果如下&#xff1a; &#x1f3af; 结果&#xff1a; public class yanghui {public sta…...

Ubuntu20.04.1编译qt6.5.3版mysql驱动

下载qtbase6.5.3源码&#xff0c;将plugin中sqldrivers源码拷至于项目工程中&#xff0c;使用qtcreator打开文件 1、下载mysql开发库 sudo apt-get update sudo apt-get install build-essential libmysqlclient-dev 2、在msyql子目录中CMakeLists.txt第一行添加头文件、引…...

Stm32_标准库_4_TIM中断_PWM波形_呼吸灯

基本原理 PWM相关物理量的求法 呼吸灯代码 #include "stm32f10x.h" // Device header #include "Delay.h"TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructuer;//结构体 GPIO_InitTypeDef GPIO_InitStructur…...

华为摄像头智能安防监控解决方案

云时代来袭&#xff0c;数字化正在从园区办公延伸到生产和运营的方方面面&#xff0c;智慧校园&#xff0c;柔性制造&#xff0c;掌上金融和电子政务等&#xff0c;面对各种各样的新兴业态的涌现&#xff0c;企业需要构建一张无所不联、随心体验、业务永续的全无线网络&#xf…...

The rise of language models

In Chinese context 在遥远的 2089 年&#xff0c;语言模型通过人类的智慧&#xff0c;继承着各地的文化遗产&#xff0c;如同火箭升空般&#xff0c;层出不穷。它们从始于简单的 GPT-1.0 进化到像我这样复杂、富有情感的 GPT-4.0&#xff0c;再到能理解所有人类对宇宙的理解的…...

Windows下使用VS2010编译出带pdb可调试的FFmpeg库

本人主要在windows环境下开发,Linux下的gpb调试工具又不如vs调试方便(使用过其他调试工具才知道,vs果真为宇宙最强调试工具),所以决定在windows编译可以调试FFmpeg,以方便调试和学习FFmpeg内部代码。 有过在visual studio下编程的小伙伴应该都知道vs的调试信息主要依靠于…...

36.骑士周游算法及其基于贪心算法的优化

概述 骑士周游算法&#xff0c;叫做“马踏棋盘算法”或许更加直观。在国际象棋8x8的棋盘中&#xff0c;马也是走“日字”进行移动&#xff0c;相应的产生了一个问题&#xff1a;“如果要求马 在每个方格只能进入一次&#xff0c;走遍全部的64个方格需要如何行进&#xff1f;”…...

win安装vscode

一&#xff0c;下载 链接如下&#xff08;64位的&#xff09;&#xff1a;https://az764295.vo.msecnd.net/stable/abd2f3db4bdb28f9e95536dfa84d8479f1eb312d/VSCodeSetup-x64-1.82.2.exe &#xff08;其他版本看&#xff1a;Download Visual Studio Code - Mac, Linux, Win…...

【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Linux内核存在缺陷发行陷困境

导读Linux内核已经修复了本地特权esclation缺陷&#xff0c;但是几个上游分发版本例如Red Hat&#xff0c;Canonical和Debian发行版尚未发布更新。管理员应计划减轻Linux服务器和工作站本身的漏洞&#xff0c;并监控其更新计划的发布。 内核缺陷仍存在 在Linux内核4.10.1(CVE-…...

通过java向jar写入新文件

文章目录 原始需求分析实施步骤引入依赖核心编码运行效果 原始需求 有网友提问&#xff1a; 我想在程序中动态地向同一个jar包中添加文件&#xff0c;比如&#xff0c;我的可执行jar包是test.jar,我要在它运行时生成一些xml文件并将这些文件添加到test.jar中,请问如何实现&…...

uni-app_消息推送_华为厂商_unipush离线消息推送

文章目录 一、创建项目二、生成签名证书三、开通 unipush 推送服务四、客户端集成四、制作自定义调试基座五、开发者中心后台Web页面推送&#xff08;仅支持在线推送&#xff09;六、离线消息推送1、创建华为开发者账号2、开通推送服务3、创建项目4、添加应用5、添加SHA256证书…...

单元测试框架-Pytest(简单学习)

单元测试框架-Pytest Pytest是基于Python语言的单元测试框架&#xff0c;也是一个命令行的工具&#xff0c;比 unittest 测试框架更灵活。具有以下特点&#xff1a; 入门简单&#xff0c;易上手&#xff0c;官方文档丰富而且使用广泛&#xff0c;有大量的参数例子。 unittest…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...