当前位置: 首页 > news >正文

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

文章目录

  • 引言
  • 一、二维随机变量及分布
    • 1.1 基本概念
    • 1.2 联合分布函数的性质
  • 二、二维离散型随机变量及分布
  • 三、多维连续型随机变量及分布
    • 3.1 基本概念
    • 3.2 二维连续型随机变量的性质
  • 写在最后


引言

隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。


一、二维随机变量及分布

1.1 基本概念

定义 1 —— 二维随机变量。设 X , Y X,Y X,Y 为定义于同一样本空间上的两个随机变量,称 ( X , Y ) (X,Y) (X,Y) 为二维随机变量。同理,也有 n n n 维随机变量的定义。

定义 2 —— 二维随机变量的分布函数。

(1)设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,对任意的 x , y ∈ R x,y\in R x,yR ,称 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy} 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合分布函数。

(2)称函数 F X ( x ) = P { X ≤ x } , F Y ( y ) = P { Y ≤ y } F_X(x)=P\{X\leq x\},F_Y(y)=P\{Y\leq y\} FX(x)=P{Xx},FY(y)=P{Yy} 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。同理,有 n n n 维随机变量的联合分布函数以及边缘分布函数。

1.2 联合分布函数的性质

( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数,有如下性质:

(1) 0 ≤ F ( x , y ) ≤ 1 ; 0 \leq F(x,y) \leq 1; 0F(x,y)1;

(2) F ( x , y ) F(x,y) F(x,y) x , y x,y x,y 都是单调不减函数;

(3) F ( x ) F(x) F(x) 关于 x , y x,y x,y 都是右连续;

(4) F ( − ∞ , − ∞ ) = 0 = F ( − ∞ , + ∞ ) = F ( + ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1. F(-\infty,-\infty)=0=F(-\infty,+\infty)=F(+\infty,-\infty)=0,F(+\infty,+\infty)=1. F(,)=0=F(,+)=F(+,)=0,F(+,+)=1.

其实和一维随机变量的分布函数的性质大差不差的,我也是从一维那里复制过来改了下的hhh。

以下是一些推论:

(1)设 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {Xx}=A,{Yy}=B ,则 F ( x , y ) = P ( A B ) , F X ( x ) = P ( A ) , F Y ( y ) = P ( B ) . F(x,y)=P(AB),F_X(x)=P(A),F_Y(y)=P(B). F(x,y)=P(AB),FX(x)=P(A),FY(y)=P(B). 即联合分布函数是要取交集。

(2) F X ( x ) = F ( x , + ∞ ) , F Y ( y ) = F ( + ∞ , y ) . F_X(x)=F(x,+\infty),F_Y(y)=F(+\infty,y). FX(x)=F(x,+),FY(y)=F(+,y). 即当一个变量限制在小于正无穷范围(这是肯定的),当然此时联合分布函数和边缘分布函数一致了。

(3)设 a 1 < a 2 , b 1 < b 2 a_1<a_2,b_1<b_2 a1<a2,b1<b2 ,则

P { a 1 < X ≤ a 2 , b 1 < Y ≤ b 2 } = P { a 1 < X ≤ a 2 , Y ≤ b 2 } − P { a 1 < X ≤ a 2 , Y ≤ b 1 } = ( P { X ≤ a 2 , Y ≤ b 2 } − P { X ≤ a 1 , Y ≤ b 2 } ) − ( P { X ≤ a 2 , Y ≤ b 1 } − P { X ≤ a 1 , Y ≤ b 1 } ) = F ( a 2 , b 2 ) − F ( a 1 , b 2 ) − F ( a 2 , b 1 ) + F ( a 1 , b 1 ) . P\{a_1 < X\leq a_2,b_1 < Y \leq b_2\}=P\{a_1 < X\leq a_2,Y\leq b_2\}-P\{a_1 < X\leq a_2,Y \leq b_1\}=(P\{X \leq a_2,Y\leq b_2\}-P\{X \leq a_1,Y\leq b_2\})-(P\{X \leq a_2,Y\leq b_1\}-P\{X\leq a_1,Y\leq b_1\})=\pmb{F(a_2,b_2)-F(a_1,b_2)-F(a_2,b_1)+F(a_1,b_1)}. P{a1<Xa2,b1<Yb2}=P{a1<Xa2,Yb2}P{a1<Xa2,Yb1}=(P{Xa2,Yb2}P{Xa1,Yb2})(P{Xa2,Yb1}P{Xa1,Yb1})=F(a2,b2)F(a1,b2)F(a2,b1)+F(a1,b1).


二、二维离散型随机变量及分布

( X , Y ) (X,Y) (X,Y) 为二维随机变量,若 ( X , Y ) (X,Y) (X,Y) 的可能取值为有限对或可列对,称 ( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量。

设随机变量 ( X , Y ) (X,Y) (X,Y) 的可能取值为 ( x i , y j ) ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) (x_i,y_j)(i=1,2,\cdots,m;j=1,2,\cdots,n) (xi,yj)(i=1,2,,m;j=1,2,,n) ,称 P { X ≤ x i , Y ≤ y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) , 或 P\{X\leq x_i,Y\leq y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n),或 P{Xxi,Yyj}=pij(i=1,2,,m;j=1,2,,n),
在这里插入图片描述

( X , Y ) (X,Y) (X,Y) 的联合分布律。其具有如下性质:

  1. p i j ≥ 0 ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) ; p_{ij}\geq 0(i=1,2,\cdots,m;j=1,2,\cdots,n); pij0(i=1,2,,m;j=1,2,,n);
  2. ∑ ∑ p i j = 1. \sum\sum p_{ij}=1. ∑∑pij=1.

由全概率公式,有 P { X = x i } = P { X = x i , y 1 } + ⋯ + P { X = x i , y n } = p i 1 + ⋯ + p i , n = p i ( i = 1 , 2 , ⋯ , m ) . P\{X=x_i\}=P\{X=x_i,y_1\}+\cdots+P\{X=x_i,y_n\}=p_{i1}+\cdots+p_{i,n}=p_i(i=1,2,\cdots,m). P{X=xi}=P{X=xi,y1}++P{X=xi,yn}=pi1++pi,n=pi(i=1,2,,m). 同理,可以得到 P { Y = y i } P\{Y= y_i\} P{Y=yi} 。于是,联合分布律每一行每一列之和,即可构成两个随机变量的边缘分布律。

在这里插入图片描述

一般情况下,联合分布律和边缘分布律可以放在一张表格中:

在这里插入图片描述

三、多维连续型随机变量及分布

3.1 基本概念

( X , Y ) (X,Y) (X,Y) 为二维随机变量,其分布函数为 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy} ,若存在非负可积函数 f ( x , y ) f(x,y) f(x,y) ,使得 F ( x , y ) = ∫ − ∞ x d u ∫ − ∞ y f ( u , v ) d v F(x,y)=\int_{-\infty}^xdu\int_{-\infty}^yf(u,v)dv F(x,y)=xduyf(u,v)dv ,称 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y) 的联合密度函数, F ( x , y ) F(x,y) F(x,y) 为联合分布函数。

f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y , f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_X(x)=\int_{-\infty}^\infty f(x,y)dy,f_Y(y)=\int_{-\infty}^\infty f(x,y)dx fX(x)=f(x,y)dy,fY(y)=f(x,y)dx 分别为随机变量 X , Y X,Y X,Y 的边缘密度函数。

F X ( x ) = ∫ − ∞ x f X ( x ) d x , F Y ( y ) = ∫ − ∞ y f Y ( y ) d y F_X(x)=\int_{-\infty}^xf_X(x)dx,F_Y(y)=\int_{-\infty}^yf_Y(y)dy FX(x)=xfX(x)dx,FY(y)=yfY(y)dy 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。

同理,以上结论可推广到 n n n 维。

3.2 二维连续型随机变量的性质

f ( x , y ) f(x,y) f(x,y) 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合密度函数,则

  1. f ( x , y ) ≥ 0 ; f(x,y)\geq 0; f(x,y)0;
  2. ∫ − ∞ ∞ d x ∫ − ∞ ∞ f ( x , y ) d y = 1. \int_{-\infty}^\infty dx\int_{-\infty}^\infty f(x,y)dy=1. dxf(x,y)dy=1.

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为其联合密度函数, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数。若 F ( x , y ) F(x,y) F(x,y) 在某点 ( x , y ) (x,y) (x,y) 处二阶可偏导,有 f ( x , y ) = ∂ F ∂ x ∂ y ; f(x,y)=\frac{\partial F}{\partial x \partial y}; f(x,y)=xyF; 若在某点处二阶不可偏导,则 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0

二阶联合分布函数一定连续,但不一定二阶可偏导。


写在最后

果然,先去看看多元微分和多重积分,看这个就较为轻松。

相关文章:

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

文章目录 引言一、二维随机变量及分布1.1 基本概念1.2 联合分布函数的性质 二、二维离散型随机变量及分布三、多维连续型随机变量及分布3.1 基本概念3.2 二维连续型随机变量的性质 写在最后 引言 隔了好长时间没看概率论了&#xff0c;上一篇文章还是 8.29 &#xff0c;快一个…...

cesium 雷达扫描 (波纹线性雷达扫描效果)

cesium 雷达扫描 (波纹线性雷达扫描效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1 <!DOCTYPE html> <html lang="en"><head>&l...

SLAM从入门到精通(tf的使用)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 在ros的机器人学习过程中&#xff0c;有一件事情是肯定少不了的。那就是坐标系的转换。其实这也很容易理解。假设有一个机器人&#xff0c;它有一个…...

python代码混淆与代码打包

0x00 背景 自己写的项目&#xff0c;又想保护源码&#xff0c;自己做个混淆是最方便的了。 0x01 实践 这里使用开源工具 GitHub - astrand/pyobfuscate: pyobfuscate&#xff0c;虽然git上才500多star&#xff0c;但是很好用。它的使用场景是混淆单个py文件。很多事物有开始就…...

Codeforces Round 899 (Div. 2)

Dashboard - Codeforces Round 899 (Div. 2) - Codeforces A. Increasing Sequence 由于a与b不相等&#xff0c;但b必须算出最小故可以从最小开始&#xff08;1&#xff09;&#xff0c;故如果b a就将其值&#xff0c;使其改变即可&#xff0c;其余由于b1 < b2 < b3..…...

【 SuperPoint 】图像特征提取上的对比实验

1. SIFT&#xff0c;SuperPoint 都具有提取图片特征点&#xff0c;并且输出特征描述子的特性&#xff0c;本篇文章从特征点的提取数量&#xff0c;特征点的正确匹配数量来探索一下二者的优劣。 SuperPoint提取到的特征点数量要少一些&#xff0c;可以理解&#xff0c;我想原因大…...

Chrome获取RequestId

Chrome获取RequestId 参考&#xff1a;https://help.aliyun.com/zh/redis/how-do-i-obtain-the-id-of-a-request 在浏览器页面按下F12键&#xff0c;打开开发者工具页面&#xff1b; 在开发者工具页面&#xff0c;单击Network(网络)&#xff1b; 在playload(载荷)窗口中找到目…...

cesium 雷达扫描 (线行扩散效果)

cesium 雷达扫描 (线行扩散效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1、 <!DOCTYPE html> <html lang="en"><head><<...

【React】React组件生命周期以及触发顺序(部分与vue做比较)

最近在学习React&#xff0c;发现其中的生命周期跟Vue有一些共同点&#xff0c;但也有比较明显的区别&#xff0c;并且执行顺序也值得讨论一下&#xff0c;于是总结了一些资料在这里&#xff0c;作为学习记录。 v17.0.1后生命周期图片 初始化阶段 由ReactDOM.render()触发 —…...

【C++】多线程的学习笔记——白话文版(bushi

目录 为什么要使用多线程 例子 代码 结果 首先要先学的库——thread库 thread的简介 thread的具体使用方法 基本变量的定义 注意&#xff08;小重点&#xff09; join函数的解读&#xff08;重点&#xff09; detach函数的解读 注意 关于vector和thread是联合使用 …...

图像处理: ImageKit.NET 3.0.10704 Crack

关于 ImageKit.NET3 100% 原生 .NET 图像处理组件。 ImageKit.NET 可让您快速轻松地向 .NET 应用程序添加图像处理功能。从 TWAIN 扫描仪和数码相机检索图像&#xff1b;加载和保存多种格式的图像文件&#xff1b;对图像应用图像滤镜和变换&#xff1b;在显示屏、平移窗口或缩略…...

K8S内容分发网络之集群,nginx,负载均衡,防火墙

K8S内容分发网络之集群&#xff0c;nginx&#xff0c;负载均衡&#xff0c;防火墙 一、Kubernetes 区域可采用 Kubeadm 方式进行安装。1.所有节点&#xff0c;关闭防火墙规则&#xff0c;关闭selinux&#xff0c;关闭swap交换2.修改主机名3.所有节点修改hosts文件4.调整内核参数…...

不愧是疑问解决神器!你强任你强

不愧是疑问解决神器&#xff01;你强任你强&#x1f44d;&#x1f44d;&#x1f44d; 在过去&#xff0c;我习惯用这种方式来阅读书籍或文章&#xff1a;先快速浏览一遍&#xff0c;然后再进行复读&#xff0c;并最终总结所学的知识点。然而&#xff0c;长期以来&#xff0c;我…...

盛最多水的容器 接雨水【基础算法精讲 02】

盛雨水最多的容器 链接 : 11 盛最多水的容器 思路 : 双指针 &#xff1a; 1.对于两条确定的边界&#xff0c;l和r,取中间的线m与r组成容器&#xff0c;如果m的高度>l的高度&#xff0c;那么整个容器的长度会减小&#xff0c;如果低于l的高度&#xff0c;那么不仅高度可…...

WordPress主题开发( 十二)之—— 主题的functions.php

WordPress主题开发&#xff08; 十&#xff09;之—— 主题的functions.php 介绍使用functions.php vs. 插件创建和使用functions.php在functions.php中的常见用途1. 使用WordPress钩子2. 启用WordPress功能3. 定义可重用的函数4. 添加自动Feed链接5. 自定义导航菜单6. 文本域加…...

代码的工厂模式

概念&#xff1a; 代码的工厂模式是一种设计模式&#xff0c;用于创建对象实例而无需直接调用构造函数。它提供了一种更加灵活和可维护的方式来创建对象&#xff0c;尤其是在需要根据不同情况创建不同类型的对象时非常有用。工厂模式隐藏了对象的创建细节&#xff0c;使代码更…...

UE5.1编辑器拓展【一、脚本化资产行为,通知,弹窗,高效复制多个同样的资产】

目录​​​​​​​ 插件制作 添加新的类&#xff1a;AssetActionUtility 添加新的模块&#xff1a;EditorScriptingUtilities 路径了解 添加debug的头文件 代码【debug.h】内涵注释&#xff1a; 写函数 .h文件 .cpp文件 插件制作 首先第一步是做一个插件&#xff1a…...

mac openssl 版本到底怎么回事 已解决

在mac 安装node多版本的时候&#xff0c;有可能把原有的 openssl1.1 版本 直接要再一次升级了&#xff0c;无奈的 php环境 编译器是 openssl 1.1 还是 3.0 &#xff0c;今天来个底朝天的找问题。 brew search openssl 有安装 三个版本。 但是错误提示 是第二个版本。 brew …...

AWS】在EC2上创建root用户,并使用root用户登录

最近有项目需要使用AWS的EC2服务器&#xff1b; 在创建服务器实例之后发现&#xff0c;没有root用户&#xff0c;仔细阅读AWS EC2文档&#xff0c;发现默认是ec2-user用户&#xff1b; 那我们需要创建一个root用户 1.创建 root 用户 注意&#xff1a;必须要要在ec2-user用户下…...

9月24日回顾

1.微程序控制器的组成&#xff1a;指令译码器、微地址寄存器&#xff08;输出和暂存控制信息&#xff09;&#xff0c;时序电路、最核心的部件是控制存储器&#xff08;只读ROM组成&#xff09;—用来存储微指令 2.突发读写&#xff1a;比如说突发地址为8&#xff0c;那么只需…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...