【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)
文章目录
- 引言
- 一、二维随机变量及分布
- 1.1 基本概念
- 1.2 联合分布函数的性质
- 二、二维离散型随机变量及分布
- 三、多维连续型随机变量及分布
- 3.1 基本概念
- 3.2 二维连续型随机变量的性质
- 写在最后
引言
隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。
一、二维随机变量及分布
1.1 基本概念
定义 1 —— 二维随机变量。设 X , Y X,Y X,Y 为定义于同一样本空间上的两个随机变量,称 ( X , Y ) (X,Y) (X,Y) 为二维随机变量。同理,也有 n n n 维随机变量的定义。
定义 2 —— 二维随机变量的分布函数。
(1)设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,对任意的 x , y ∈ R x,y\in R x,y∈R ,称 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{X≤x,Y≤y} 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合分布函数。
(2)称函数 F X ( x ) = P { X ≤ x } , F Y ( y ) = P { Y ≤ y } F_X(x)=P\{X\leq x\},F_Y(y)=P\{Y\leq y\} FX(x)=P{X≤x},FY(y)=P{Y≤y} 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。同理,有 n n n 维随机变量的联合分布函数以及边缘分布函数。
1.2 联合分布函数的性质
设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数,有如下性质:
(1) 0 ≤ F ( x , y ) ≤ 1 ; 0 \leq F(x,y) \leq 1; 0≤F(x,y)≤1;
(2) F ( x , y ) F(x,y) F(x,y) 对 x , y x,y x,y 都是单调不减函数;
(3) F ( x ) F(x) F(x) 关于 x , y x,y x,y 都是右连续;
(4) F ( − ∞ , − ∞ ) = 0 = F ( − ∞ , + ∞ ) = F ( + ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1. F(-\infty,-\infty)=0=F(-\infty,+\infty)=F(+\infty,-\infty)=0,F(+\infty,+\infty)=1. F(−∞,−∞)=0=F(−∞,+∞)=F(+∞,−∞)=0,F(+∞,+∞)=1.
其实和一维随机变量的分布函数的性质大差不差的,我也是从一维那里复制过来改了下的hhh。
以下是一些推论:
(1)设 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {X≤x}=A,{Y≤y}=B ,则 F ( x , y ) = P ( A B ) , F X ( x ) = P ( A ) , F Y ( y ) = P ( B ) . F(x,y)=P(AB),F_X(x)=P(A),F_Y(y)=P(B). F(x,y)=P(AB),FX(x)=P(A),FY(y)=P(B). 即联合分布函数是要取交集。
(2) F X ( x ) = F ( x , + ∞ ) , F Y ( y ) = F ( + ∞ , y ) . F_X(x)=F(x,+\infty),F_Y(y)=F(+\infty,y). FX(x)=F(x,+∞),FY(y)=F(+∞,y). 即当一个变量限制在小于正无穷范围(这是肯定的),当然此时联合分布函数和边缘分布函数一致了。
(3)设 a 1 < a 2 , b 1 < b 2 a_1<a_2,b_1<b_2 a1<a2,b1<b2 ,则
P { a 1 < X ≤ a 2 , b 1 < Y ≤ b 2 } = P { a 1 < X ≤ a 2 , Y ≤ b 2 } − P { a 1 < X ≤ a 2 , Y ≤ b 1 } = ( P { X ≤ a 2 , Y ≤ b 2 } − P { X ≤ a 1 , Y ≤ b 2 } ) − ( P { X ≤ a 2 , Y ≤ b 1 } − P { X ≤ a 1 , Y ≤ b 1 } ) = F ( a 2 , b 2 ) − F ( a 1 , b 2 ) − F ( a 2 , b 1 ) + F ( a 1 , b 1 ) . P\{a_1 < X\leq a_2,b_1 < Y \leq b_2\}=P\{a_1 < X\leq a_2,Y\leq b_2\}-P\{a_1 < X\leq a_2,Y \leq b_1\}=(P\{X \leq a_2,Y\leq b_2\}-P\{X \leq a_1,Y\leq b_2\})-(P\{X \leq a_2,Y\leq b_1\}-P\{X\leq a_1,Y\leq b_1\})=\pmb{F(a_2,b_2)-F(a_1,b_2)-F(a_2,b_1)+F(a_1,b_1)}. P{a1<X≤a2,b1<Y≤b2}=P{a1<X≤a2,Y≤b2}−P{a1<X≤a2,Y≤b1}=(P{X≤a2,Y≤b2}−P{X≤a1,Y≤b2})−(P{X≤a2,Y≤b1}−P{X≤a1,Y≤b1})=F(a2,b2)−F(a1,b2)−F(a2,b1)+F(a1,b1).
二、二维离散型随机变量及分布
设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,若 ( X , Y ) (X,Y) (X,Y) 的可能取值为有限对或可列对,称 ( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量。
设随机变量 ( X , Y ) (X,Y) (X,Y) 的可能取值为 ( x i , y j ) ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) (x_i,y_j)(i=1,2,\cdots,m;j=1,2,\cdots,n) (xi,yj)(i=1,2,⋯,m;j=1,2,⋯,n) ,称 P { X ≤ x i , Y ≤ y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) , 或 P\{X\leq x_i,Y\leq y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n),或 P{X≤xi,Y≤yj}=pij(i=1,2,⋯,m;j=1,2,⋯,n),或
为 ( X , Y ) (X,Y) (X,Y) 的联合分布律。其具有如下性质:
- p i j ≥ 0 ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) ; p_{ij}\geq 0(i=1,2,\cdots,m;j=1,2,\cdots,n); pij≥0(i=1,2,⋯,m;j=1,2,⋯,n);
- ∑ ∑ p i j = 1. \sum\sum p_{ij}=1. ∑∑pij=1.
由全概率公式,有 P { X = x i } = P { X = x i , y 1 } + ⋯ + P { X = x i , y n } = p i 1 + ⋯ + p i , n = p i ( i = 1 , 2 , ⋯ , m ) . P\{X=x_i\}=P\{X=x_i,y_1\}+\cdots+P\{X=x_i,y_n\}=p_{i1}+\cdots+p_{i,n}=p_i(i=1,2,\cdots,m). P{X=xi}=P{X=xi,y1}+⋯+P{X=xi,yn}=pi1+⋯+pi,n=pi(i=1,2,⋯,m). 同理,可以得到 P { Y = y i } P\{Y= y_i\} P{Y=yi} 。于是,联合分布律每一行每一列之和,即可构成两个随机变量的边缘分布律。
一般情况下,联合分布律和边缘分布律可以放在一张表格中:
三、多维连续型随机变量及分布
3.1 基本概念
设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,其分布函数为 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{X≤x,Y≤y} ,若存在非负可积函数 f ( x , y ) f(x,y) f(x,y) ,使得 F ( x , y ) = ∫ − ∞ x d u ∫ − ∞ y f ( u , v ) d v F(x,y)=\int_{-\infty}^xdu\int_{-\infty}^yf(u,v)dv F(x,y)=∫−∞xdu∫−∞yf(u,v)dv ,称 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为 ( X , Y ) (X,Y) (X,Y) 的联合密度函数, F ( x , y ) F(x,y) F(x,y) 为联合分布函数。
称 f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y , f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_X(x)=\int_{-\infty}^\infty f(x,y)dy,f_Y(y)=\int_{-\infty}^\infty f(x,y)dx fX(x)=∫−∞∞f(x,y)dy,fY(y)=∫−∞∞f(x,y)dx 分别为随机变量 X , Y X,Y X,Y 的边缘密度函数。
称 F X ( x ) = ∫ − ∞ x f X ( x ) d x , F Y ( y ) = ∫ − ∞ y f Y ( y ) d y F_X(x)=\int_{-\infty}^xf_X(x)dx,F_Y(y)=\int_{-\infty}^yf_Y(y)dy FX(x)=∫−∞xfX(x)dx,FY(y)=∫−∞yfY(y)dy 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。
同理,以上结论可推广到 n n n 维。
3.2 二维连续型随机变量的性质
设 f ( x , y ) f(x,y) f(x,y) 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合密度函数,则
- f ( x , y ) ≥ 0 ; f(x,y)\geq 0; f(x,y)≥0;
- ∫ − ∞ ∞ d x ∫ − ∞ ∞ f ( x , y ) d y = 1. \int_{-\infty}^\infty dx\int_{-\infty}^\infty f(x,y)dy=1. ∫−∞∞dx∫−∞∞f(x,y)dy=1.
设 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为其联合密度函数, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数。若 F ( x , y ) F(x,y) F(x,y) 在某点 ( x , y ) (x,y) (x,y) 处二阶可偏导,有 f ( x , y ) = ∂ F ∂ x ∂ y ; f(x,y)=\frac{\partial F}{\partial x \partial y}; f(x,y)=∂x∂y∂F; 若在某点处二阶不可偏导,则 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 。
二阶联合分布函数一定连续,但不一定二阶可偏导。
写在最后
果然,先去看看多元微分和多重积分,看这个就较为轻松。
相关文章:

【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)
文章目录 引言一、二维随机变量及分布1.1 基本概念1.2 联合分布函数的性质 二、二维离散型随机变量及分布三、多维连续型随机变量及分布3.1 基本概念3.2 二维连续型随机变量的性质 写在最后 引言 隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个…...

cesium 雷达扫描 (波纹线性雷达扫描效果)
cesium 雷达扫描 (波纹线性雷达扫描效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1 <!DOCTYPE html> <html lang="en"><head>&l...

SLAM从入门到精通(tf的使用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 在ros的机器人学习过程中,有一件事情是肯定少不了的。那就是坐标系的转换。其实这也很容易理解。假设有一个机器人,它有一个…...

python代码混淆与代码打包
0x00 背景 自己写的项目,又想保护源码,自己做个混淆是最方便的了。 0x01 实践 这里使用开源工具 GitHub - astrand/pyobfuscate: pyobfuscate,虽然git上才500多star,但是很好用。它的使用场景是混淆单个py文件。很多事物有开始就…...
Codeforces Round 899 (Div. 2)
Dashboard - Codeforces Round 899 (Div. 2) - Codeforces A. Increasing Sequence 由于a与b不相等,但b必须算出最小故可以从最小开始(1),故如果b a就将其值,使其改变即可,其余由于b1 < b2 < b3..…...

【 SuperPoint 】图像特征提取上的对比实验
1. SIFT,SuperPoint 都具有提取图片特征点,并且输出特征描述子的特性,本篇文章从特征点的提取数量,特征点的正确匹配数量来探索一下二者的优劣。 SuperPoint提取到的特征点数量要少一些,可以理解,我想原因大…...

Chrome获取RequestId
Chrome获取RequestId 参考:https://help.aliyun.com/zh/redis/how-do-i-obtain-the-id-of-a-request 在浏览器页面按下F12键,打开开发者工具页面; 在开发者工具页面,单击Network(网络); 在playload(载荷)窗口中找到目…...

cesium 雷达扫描 (线行扩散效果)
cesium 雷达扫描 (线行扩散效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1、 <!DOCTYPE html> <html lang="en"><head><<...

【React】React组件生命周期以及触发顺序(部分与vue做比较)
最近在学习React,发现其中的生命周期跟Vue有一些共同点,但也有比较明显的区别,并且执行顺序也值得讨论一下,于是总结了一些资料在这里,作为学习记录。 v17.0.1后生命周期图片 初始化阶段 由ReactDOM.render()触发 —…...

【C++】多线程的学习笔记——白话文版(bushi
目录 为什么要使用多线程 例子 代码 结果 首先要先学的库——thread库 thread的简介 thread的具体使用方法 基本变量的定义 注意(小重点) join函数的解读(重点) detach函数的解读 注意 关于vector和thread是联合使用 …...

图像处理: ImageKit.NET 3.0.10704 Crack
关于 ImageKit.NET3 100% 原生 .NET 图像处理组件。 ImageKit.NET 可让您快速轻松地向 .NET 应用程序添加图像处理功能。从 TWAIN 扫描仪和数码相机检索图像;加载和保存多种格式的图像文件;对图像应用图像滤镜和变换;在显示屏、平移窗口或缩略…...

K8S内容分发网络之集群,nginx,负载均衡,防火墙
K8S内容分发网络之集群,nginx,负载均衡,防火墙 一、Kubernetes 区域可采用 Kubeadm 方式进行安装。1.所有节点,关闭防火墙规则,关闭selinux,关闭swap交换2.修改主机名3.所有节点修改hosts文件4.调整内核参数…...

不愧是疑问解决神器!你强任你强
不愧是疑问解决神器!你强任你强👍👍👍 在过去,我习惯用这种方式来阅读书籍或文章:先快速浏览一遍,然后再进行复读,并最终总结所学的知识点。然而,长期以来,我…...

盛最多水的容器 接雨水【基础算法精讲 02】
盛雨水最多的容器 链接 : 11 盛最多水的容器 思路 : 双指针 : 1.对于两条确定的边界,l和r,取中间的线m与r组成容器,如果m的高度>l的高度,那么整个容器的长度会减小,如果低于l的高度,那么不仅高度可…...
WordPress主题开发( 十二)之—— 主题的functions.php
WordPress主题开发( 十)之—— 主题的functions.php 介绍使用functions.php vs. 插件创建和使用functions.php在functions.php中的常见用途1. 使用WordPress钩子2. 启用WordPress功能3. 定义可重用的函数4. 添加自动Feed链接5. 自定义导航菜单6. 文本域加…...
代码的工厂模式
概念: 代码的工厂模式是一种设计模式,用于创建对象实例而无需直接调用构造函数。它提供了一种更加灵活和可维护的方式来创建对象,尤其是在需要根据不同情况创建不同类型的对象时非常有用。工厂模式隐藏了对象的创建细节,使代码更…...

UE5.1编辑器拓展【一、脚本化资产行为,通知,弹窗,高效复制多个同样的资产】
目录 插件制作 添加新的类:AssetActionUtility 添加新的模块:EditorScriptingUtilities 路径了解 添加debug的头文件 代码【debug.h】内涵注释: 写函数 .h文件 .cpp文件 插件制作 首先第一步是做一个插件:…...

mac openssl 版本到底怎么回事 已解决
在mac 安装node多版本的时候,有可能把原有的 openssl1.1 版本 直接要再一次升级了,无奈的 php环境 编译器是 openssl 1.1 还是 3.0 ,今天来个底朝天的找问题。 brew search openssl 有安装 三个版本。 但是错误提示 是第二个版本。 brew …...
AWS】在EC2上创建root用户,并使用root用户登录
最近有项目需要使用AWS的EC2服务器; 在创建服务器实例之后发现,没有root用户,仔细阅读AWS EC2文档,发现默认是ec2-user用户; 那我们需要创建一个root用户 1.创建 root 用户 注意:必须要要在ec2-user用户下…...
9月24日回顾
1.微程序控制器的组成:指令译码器、微地址寄存器(输出和暂存控制信息),时序电路、最核心的部件是控制存储器(只读ROM组成)—用来存储微指令 2.突发读写:比如说突发地址为8,那么只需…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...

【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...