背包问题
目录
开端
01背包问题
AcWing 01背包问题
Luogu P2925干草出售
Luogu P1048采药
完全背包问题
AcWing 完全背包问题
Luogu P1853投资的最大效益
多重背包问题
AcWing 多重背包问题 I
AcWing 多重背包问题 II
Luogu P1776宝物筛选
混合背包问题
AcWing 混合背包问题
Luogu P1833樱花
二维费用背包问题
AcWing 二维费用的背包问题
Luogu P1507NASA的食物计划
分组背包问题
AcWing 分组背包问题
Luogu P1757 通天之分组背包
开端
关于背包问题,嗯一直学不明白,暑假咸的没事又拾起来学了一下,跟着这位大佬整理的思路(背包九讲——全篇详细理解与代码实现-CSDN博客),对背包的思想有了一定清晰的理解,大佬的文章有些长,所以跟着自己的思路再整理一下。
为了方便统一,先定义一下
c[i]:表示代价
w[i]:表示价值
dp[i][j]:表示前i个物品花费代价为j的可以获得的最大代价
p[i]:表示第i种物品最多有p[i]件
01背包问题
定义:
dp[i][j]:表示前i个物品恰放入一个容量为j的背包下可以获得的最大代价
子问题第i1件物品状态:
①不选:dp[i][j]=dp[i-1][j]②选:dp[i][j]=dp[i][j-c[i]]+w[i]
状态转移方程:
dp[i][j]=max(dp[i-1][j],dp[i][j-c[i]]+w[i])
优化空间复杂度:
O(V*N)
for(int i=1;i<=n;i++)for(int j=c[i];j<=V;j--)dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);
O(V)
for(int i=1;i<=n;i++)for(int j=V;j>=c[i];j++)dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
关于顺序和逆序:
逆序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i])转移过来的 顺序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i][j],dp[i][j-c[i]]+w[i])转移过来的
初始化问题:
①要求恰好装满:dp[i]=-∞,dp[0]=0;②只要求价值最大:dp[i]=0;
AcWing 01背包问题
const int N = 1010;
int c[N], w[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int i = 1; i <= N; i++)cin >> c[i] >> w[i];for (int i = 1; i <= N; i++)for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[V] << endl;
}
Luogu P2925干草出售
const int N = 5e4 + 10;
int w[N], dp[N];
inline void solve()
{int C, H;cin >> C >> H;for (int i = 1; i <= H; i++)cin >> w[i];for (int i = 1; i <= H; i++)for (int j = C; j >= w[i]; j--)dp[j] = max(dp[j], dp[j - w[i]] + w[i]);cout << dp[C] << endl;
}
Luogu P1048采药
const int N = 1010;
int c[N], w[N], dp[N];
inline void solve()
{int T, M;cin >> T >> M;for (int i = 1; i <= M; i++)cin >> c[i] >> w[i];for (int i = 1; i <= M; i++)for (int j = T; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[T] << endl;
}
完全背包问题
定义:
dp[i][j]:表示前i种物品恰放入一个容量为j的背包下可以获得的最大代价
子问题第i种物品状态:
①不选该种物品:dp[i][j]=dp[i-1][j]; ②选不同件该种物品:选0件、1件、2件……k件:dp[i][j]=dp[i-1][j-c[i]*k]+w[i]*k;
状态转移方程:
dp[i][j]=max(dp[i-1][j-c[i]*k]+w[i]*k) 0<=c[i]*k<=j
优化空间复杂度:
O(N*∑(V/c[i]))
for(int i=1;i<=n;i++)for(int j=c[i];j<=V;j++)for(int k=0;c[i]*k<=j;k++)dp[i][j]=max(dp[i][j],dp[i-1][j-c[i]*k]+w[i]*k); # 第一个参数,因为k=0时就相当于dp[i-1][j];
O(V*N)转化为01背包问题
for(int i=1;i<=n;i++)for(int j=c[i];j<=j;j++)dp[j]=max(dp[j],dp[j-c[i]]+w[i]); //等价于dp[i][j]=max(dp[i-1][j],dp[i][j-c[i]]+w[i]);(不取该物品,取不同件);
关于顺序和逆序:
逆序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i])转移过来的 顺序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i-1][j],dp[i][j-c[i]]+w[i])转移过来的
初始化问题:
①要求恰好装满:dp[i]=-∞,dp[0]=0;②只要求价值最大:dp[i]=0;
AcWing 完全背包问题
const int N = 1010;
int c[N], w[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int i = 1; i <= N; i++)cin >> c[i] >> w[i];for (int i = 1; i <= N; i++)for (int j = c[i]; j <= V; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[V] << endl;
}
Luogu P1853投资的最大效益
const int N = 1e6 + 10;
int c[N], w[N], dp[N];
inline void solve()
{int s, n, d;cin >> s >> n >> d;for (int i = 1; i <= d; i++)cin >> c[i] >> w[i];while (n--){for (int i = 1; i <= d; i++)for (int j = c[i]; j <= s; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);s += dp[s];}cout << s << endl;
}
int main(
这个题目有个小坑
所以要做一下处理:除以1000防止爆空间
const int N = 1e6 + 10;
int c[N], w[N], dp[N];
inline void solve()
{int s, n, d;cin >> s >> n >> d;for (int i = 1; i <= d; i++)cin >> c[i] >> w[i];while (n--){for (int i = 1; i <= d; i++)for (int j = c[i] / 1000; j <= s / 1000; j++)dp[j] = max(dp[j], dp[j - c[i] / 1000] + w[i]);s += dp[s / 1000];}cout << s << endl;
}
多重背包问题
定义:
dp[i][j]:表示前i种物品恰放入一个容量为j的背包下可以获得的最大代价
子问题第i种物品状态:
①不选该种物品:dp[i][j]=dp[i-1][j]; ②选不同件该种物品:选1件、2件……p[i]件:dp[i][j]=dp[i-1][j-c[i]*k]+w[i]*k;
状态转移方程:
dp[i][j]=max(dp[i-1][j-c[i]*k]+w[i]*k) 0<=k<=p[i]
转化为01背包问题:
方法一:O(V*∑p[i])
for(int i=1;i<=n;i++)for(int j=V;j>=c[i];j--)for(int k=1;c[i]*k<=j&&k<=p[i];k++)dp[j]=max(dp[j],dp[j-c[i]*k]+w[i]*k); # 第一个参数,因为k=0时就相当于dp[i-1][j];
方法二:二进制优化O(N*log(p)*V)
for (int i = 1; i <= N; i++){int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s) //0……2^k-1部分的系数1,2,4,8……{cnt++;c[cnt] = k * a;w[cnt] = k * b;s -= k;k *= 2;}if (s > 0) //2^k……s部分的系数 s-2^k{cnt++;c[cnt] = s * a;w[cnt] = s * b;}}N = cnt; //更新总数量for (int i = 1; i <= N; i++) //01背包问题for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);
for (int i = 1; i <= n; i++){cin >> c[i] >> w[i] >> p[i];int s = min(p[i], W / w[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = W; j >= k * w[i]; j--){dp[j] = max(dp[j], dp[j - k * w[i]] + k * c[i]);}}}
初始化问题:
①要求恰好装满:dp[i]=-∞,dp[0]=0;②只要求价值最大:dp[i]=0;
方法一:
AcWing 多重背包问题 I
const int N = 110;
int c[N], w[N], p[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;int cnt = 0;for (int i = 1; i <= N; i++)cin >> c[i] >> w[i] >> p[i];for (int i = 1; i <= N; i++)for (int j = V; j >= c[i]; j--)for (int k = 1; c[i] * k <= j && k <= p[i]; k++)dp[j] = max(dp[j], dp[j - c[i] * k] + w[i] * k);cout << dp[V] << endl;
}
方法二:
AcWing 多重背包问题 II
const int N = 20010; //注意初始化,否则会越界
int c[N], w[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;int cnt = 0;for (int i = 1; i <= N; i++){int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s) //0……2^k-1部分的系数1,2,4,8……{cnt++;c[cnt] = k * a;w[cnt] = k * b;s -= k;k *= 2;}if (s > 0) //2^k……s部分的系数 s-2^k{cnt++;c[cnt] = s * a;w[cnt] = s * b;}}N = cnt; //更新总数量for (int i = 1; i <= N; i++) //01背包问题for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[V] << endl;
}
Luogu P1776宝物筛选
const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], dp[N];
inline void solve()
{int n, W;cin >> n >> W;int cnt = 0;for (int i = 1; i <= n; i++){int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s){cnt++;w[cnt] = k * a;c[cnt] = k * b;s -= k;k *= 2;}if (s > 0){cnt++;w[cnt] = s * a;c[cnt] = s * b;}}n = cnt;for (int i = 1; i <= n; i++)for (int j = W; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[W] << endl;
}
简化
const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], p[N], dp[N];
inline void solve()
{int n, W;cin >> n >> W;for (int i = 1; i <= n; i++){cin >> c[i] >> w[i] >> p[i];int s = min(p[i], W / w[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = W; j >= k * w[i]; j--){dp[j] = max(dp[j], dp[j - k * w[i]] + k * c[i]);}}}cout << dp[W] << endl;
}
混合背包问题
01背包、完全背包、多重背包的混合状态转移:
for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> p[i];// 01背包if (p[i] == -1)for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);// 完全背包else if (p[i] == 0)for (int j = c[i]; j <= V; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);// 多重背包二进制优化else{int s = min(p[i], V / c[i]);for (int k = 1; s > 0; k <<= 1){k = max(k, s);s -= k;for (int j = V; j >= k * c[i]; j--)dp[j] = max(dp[j], dp[j - k * c[i]] + k * w[i]);}}}
AcWing 混合背包问题
const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], p[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> p[i];// 01背包if (p[i] == -1)for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);// 完全背包else if (p[i] == 0)for (int j = c[i]; j <= V; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);//或将完全背包转化为多重01背包s=V/c[i]// 多重背包二进制优化else{int s = min(p[i], V / c[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = V; j >= k * c[i]; j--)dp[j] = max(dp[j], dp[j - k * c[i]] + k * w[i]);}}}cout << dp[V] << endl;
}
Luogu P1833樱花
const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], p[N], dp[N];
inline void solve()
{int m1, m2, s1, s2, N;scanf("%d:%d %d:%d %d", &m1, &s1, &m2, &s2, &N);int V = m2 * 60 + s2 - m1 * 60 - s1;for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> p[i];int s;if (p[i] == 0) // 完全转化为多重s = V / c[i];elses = min(p[i], V / c[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = V; j >= k * c[i]; j--)dp[j] = max(dp[j], dp[j - k * c[i]] + k * w[i]);}}cout << dp[V] << endl;
}
二维费用背包问题
定义:每件物品需要同时花费两种不同的代价
dp[i][j][k]:表示前i种物品付出两种代价分别最大为j和k时可获得的最大价值
状态转移方程:
dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-c[i]][k-m[i]]+w[i])
01背包代码(完全背包、多重背包可以类比)
for(int i=1;i<=n;i++)for(int j=V;j>=c[i];j--)for(int k=M;k>=m[i];k--)dp[j][k]=max(dp[j][k],dp[j-c[i]][k-m[i]]+w[i]);
AcWing 二维费用的背包问题
const int N = 1010; // 注意初始化,否则会越界
int c[N], w[N], m[N], dp[N][N];
inline void solve()
{int N, V, M;cin >> N >> V >> M;for (int i = 1; i <= N; i++){cin >> c[i] >> m[i] >> w[i];for (int j = V; j >= c[i]; j--)for (int k = M; k >= m[i]; k--)dp[j][k] = max(dp[j][k], dp[j - c[i]][k - m[i]] + w[i]);}cout << dp[V][M] << endl;
}
Luogu P1507NASA的食物计划
const int N = 1010; // 注意初始化,否则会越界
int c[N], w[N], m[N], dp[N][N];
inline void solve()
{int V, M, N;cin >> V >> M >> N;for (int i = 1; i <= N; i++){cin >> c[i] >> m[i] >> w[i];for (int j = V; j >= c[i]; j--)for (int k = M; k >= m[i]; k--)dp[j][k] = max(dp[j][k], dp[j - c[i]][k - m[i]] + w[i]);}cout << dp[V][M] << endl;
}
分组背包问题
定义:
dp[k][j]:表示前k组物品花费代价j能取得的最大价值
子问题第k组物品状态:
①不选该组物品:dp[k][j]=dp[k-1][j]; ②选该组物品:dp[k][j]=dp[k-1][j-c[i]+w[i]] 物品i属于k组
状态转移方程:
dp[k][j]=max(dp[k-1][j],dp[k-1][j-c[i]]+w[i])
模板:
for (int k = 1; k <= N; k++){int s;cin >> s; // 第k组的物品数量for (int i = 1; i <= s; i++)cin >> c[i] >> w[i]; // 组中每个物品i的属性for (int j = V; j >= 0; j--)for (int i = 1; i <= s; i++) // 保证每组物品只能选一个,可以覆盖之前组内物品最优解的来取最大值if (j >= c[i])dp[j] = max(dp[j], dp[j - c[i]] + w[i]);}
AcWing 分组背包问题
const int N = 110; // 注意初始化,否则会越界
int c[N], w[N], m[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int k = 1; k <= N; k++){int s;cin >> s; // 第k组的物品数量for (int i = 1; i <= s; i++)cin >> c[i] >> w[i]; // 组中每个物品i的属性for (int j = V; j >= 0; j--)for (int i = 1; i <= s; i++) // 保证每组物品只能选一个,可以覆盖之前组内物品最优解的来取最大值if (j >= c[i])dp[j] = max(dp[j], dp[j - c[i]] + w[i]);}cout << dp[V] << endl;
}
Luogu P1757 通天之分组背包
const int N = 110; // 注意初始化,否则会越界
const int M = 1010; // 注意初始化,否则会越界
int c[M], w[M], dp[M];
int g[N][N], b[M]; // g[k][i]表示小组k种第i个物品的编号,b[k]表示小组k的物品+1;
inline void solve()
{int N, V;cin >> V >> N;int t = 0, k = 0;for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> k;t = max(t, k); // 求小组的组数b[k]++; // 小组k的物品+1;g[k][b[k]] = i; // 小组k中第b[k]个物品的编号为i;}for (int k = 1; k <= t; k++)for (int j = V; j >= 0; j--)for (int i = 1; i <= b[k]; i++)if (j >= c[g[k][i]])dp[j] = max(dp[j], dp[j - c[g[k][i]]] + w[g[k][i]]);cout << dp[V] << endl;
}
相关文章:

背包问题
目录 开端 01背包问题 AcWing 01背包问题 Luogu P2925干草出售 Luogu P1048采药 完全背包问题 AcWing 完全背包问题 Luogu P1853投资的最大效益 多重背包问题 AcWing 多重背包问题 I AcWing 多重背包问题 II Luogu P1776宝物筛选 混合背包问题 AcWing 混合背包问题…...
JavaSE | 初始Java(十一) | 抽象类和抽象接口
抽象类概念 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的, 如果 一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类 在 Java 中,一个…...

产品经理如何科学的进行需求调研?
导语:作为产品经理,需求调研是开展工作的重要环节之一。科学、有效地进行需求调研不仅可以帮助产品经理更好地了解用户需求,还能指导产品设计和功能开发,提升产品的竞争力。本文将介绍几种科学的方法和技巧,帮助产品经…...

AI智能问答系统源码/AI绘画商业系统/支持GPT联网提问/支持Midjourney绘画
一、AI创作系统 SparkAi创作系统是基于国外很火的ChatGPT进行开发的AI智能问答系统和AI绘画系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图…...

玩具玩偶配送经营商城小程序的作用是什么?
玩具玩偶是小孩子们喜欢的产品,其市场需求度很高,以前玩具店里总是不缺乏客户,但现在随着人们生活品牌提升及消费形式改变,无论玩具厂商还是门店经销商都面对着不少痛点: 如拓客引流难、线上销售经营难、营销难、分销…...

latex表格内容换行
问题描述: 在用latex表格中编写公式时,可能出现公式太长,表格中后面的内容不能在文档中呈现,如下图1,故要进行行内内容的换行,使内容呈现完全而传统的\换行后,换行内容会顶格,如图2。 解决方…...
2023 牛客国庆day4 【10.2训练补题】
目录 B-Basic Gcd Problem(素数筛快速幂) H-Harder Gcd Problem(素数) B-Basic Gcd Problem(素数筛快速幂) 打表找规律发现答案为 (n质因子数目)^c #include<bits/stdc.h> using namespace std;…...
android的USB开发时 mUsbManager.getDeviceList()获取都为空
类提供的主要方法有: getDeviceList() 获得设备列表,返回的是一个HashMap.;hasPermission(UsbDevice device) 判断你的应用程序是否有接入此USB设备的权限,如果有则返回真,否则返回false.openDevice(UsbDevice device) 打开USB设…...

SpringCloud Alibaba - Seata 部署 TC 服务,并集成微服务
目录 一、Seata 架构 1.1、Seata 架构重要角色 1.2、部署 TC 服务 1.2.1、前言 1.2.2、下载 seata-server 包,解压 1.2.3、修改配置 1.2.4、在 nacos 中添加配置 1.2.5、创建数据库表 1.2.6、启动 TC 服务 1.3、微服务集成 Seata 1.3.1、引入依赖 1.3.2、…...
Java基础面试,接口和抽象类的区别?
接口和抽象类的区别? 抽象类可以存在普通成员函数,而接口中只能存在public abstract 方法。抽象类中的成员变量可以是各种类型的,而接口中的成员变量只能是public static final类型的.抽象类只能继承一个,接口可以实现多个。 接…...

《视觉 SLAM 十四讲》V2 第 4 讲 李群与李代数 【什么样的相机位姿 最符合 当前观测数据】
P71 文章目录 4.1 李群与李代数基础4.1.3 李代数的定义4.1.4 李代数 so(3)4.1.5 李代数 se(3) 4.2 指数与对数映射4.2.1 SO(3)上的指数映射罗德里格斯公式推导 4.2.2 SE(3) 上的指数映射SO(3),SE(3),so(3),se(3)的对应关系 4.3 李代数求导与扰动模型4.3.2 SO(3)上的李代数求导…...

【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--笔记
0. 内容 T1. 参考SLAM14讲P247直接可写,注意 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2之间有约束(关系)。 套用舒尔补公式: marg掉 ξ 1 \xi_1 ξ1之后,信息被传递到 L 1 和 L 2 L_1和L_2 L1和L2之间了。 T2....
mfc 动态加载dll库,Mat转CImage,读ini配置文件,鼠标操作,在edit控件上画框,调试信息打印
动态加载dll库 h文件中添加 #include "mydll.h" #ifdef UNICODE //区分字符集 #define LoadLibrary LoadLibraryW #else #define LoadLibrary LoadLibraryA #endif // !UNICODEtypedef double(*mydllPtr)(int, int);类内添加: mydllPtr m_mydll; cpp…...

索尼 toio™应用创意开发征文|检测工业平台震动
虽然索尼toio Q宝机器人主要是为儿童教育娱乐开发的,但我认为它在工业等领域也有一定应用潜力。例如,工业领域经常会有某些平面在实际作业中持续震动,导致零件过疲劳、平台失去稳定等问题。而这样的平台往往位于机器内部,从外部很…...

【已解决】 Expected linebreaks to be ‘LF‘ but found ‘CRLF‘.
问题描述 团队都是用mac,只有我自己是windows,启动项目一直报错 Expected linebreaks to be ‘LF‘ but found ‘CRLF‘. 但我不能因为自己的问题去改团队配置,也尝试过该vscode配置默认是LF还是报错 思路 看文章vscode如何替换所有文件的…...

Java8 Lambda.stream.sorted() 方法使用浅析分享
文章目录 Java8 Lambda.stream.sorted() 方法使用浅析分享sorted() 重载方法一升序降序 sorted() 重载方法二升序降序多字段排序 mock代码 Java8 Lambda.stream.sorted() 方法使用浅析分享 本文主要分享运用 Java8 中的 Lambda.stream.sorted方法排序的使用! sorted…...

Neural Networks for Fingerprint Recognition
Neural Computation ( IF 3.278 ) 摘要: 在采集指纹图像数据库后,设计了一种用于指纹识别的神经网络算法。当给出一对指纹图像时,算法输出两个图像来自同一手指的概率估计值。在一个实验中,神经网络使用几百对图像进行训练&…...

ChatGPT推出全新功能,引发人工智能合成声音担忧|百能云芯
人工智能AI科技企业OpenAI公司25日宣布,其聊天应用程序ChatGPT如今具备「看、听、说」能力,至少能够理解口语、用合成语音回应并且处理图像;但专家忧心,以假乱真与深度伪造的乱象可能变本加厉。 国家广播公司新闻网(NBC News)报导…...

Java 实现遍历一个文件夹,文件夹有100万数据,获取到修改时间在2天之内的数据
目录 1 需求2 实现1(第一种方法)2 实现2 (推荐使用这个,快)3 实现3(推荐) 1 需求 现在有一个文件夹,里面会一直存数据,动态的存数据,之后可能会达到100万&am…...
持续集成部署-k8s-命令行工具:基础命令的使用
持续集成部署-k8s-命令行工具:基础命令的使用 1. 资源类型与别名2. 资源操作2.1 创建对象2.2 显示和查找资源2.3 更新资源2.4 修补资源2.5 编辑资源2.6 scale 资源2.7 删除资源3. 格式化输出1. 资源类型与别名 资源类型缩写别名clusterscomponentstatusescsconfigmapscmdaemon…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...