当前位置: 首页 > news >正文

矩阵的c++实现(2)

上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列,这一次我们多看看例题,了解什么情况下用矩阵比较合适。

先看例题

1.洛谷P1939 【模板】矩阵加速(数列)

模板题应该很简单。

补:1<n<=10^9

10^9肯定超了,所以可以用矩阵做

我们可以观察到,每一项(x>3)都是由两个量组成,于是创建矩阵:

A=[a_{n-1},a_{n-3}]

同时:B=A\times base=[a_{n},?]

那么因为如果要再让A\times base\times base=[a_{n+1},??],A*base 之后还是应该是前一个为一项,后一项为它的两项前。所以?处应为a_{n-2}。??处应为什么自己想想,发在评论区里吧。

但是,a_{n-2}在A中并没有出现,这样我们就不可以用A*base表示B了,因为矩阵的乘法中,必须要上一个矩阵中有的元素,才能进入下一个矩阵中。

无论怎样,a_{n-2}都无法表示为n\times a_{n-1}+m\times a_{n-2}的形式,所以B不可以由A构成。

那这个时候就可以用一个巧妙的方法:我们在A和B中都增加a_{n-2}这一项,这样就会变成

[a_{n-1},a_{n-2},a_{n-3}]\times base=[a_{n},a_{n-1},a_{n-2}]

a_{n}可以表示为a_{n-1}+a_{n-3},这样就可以满足每一个条件都可以了。

那么我们利用矩阵乘法,在纸上演算七七四十八个小时,就可以得出,

base=\begin{bmatrix} 1,1,0\\ 0,0,1\\ 1,0,0\\ \end{bmatrix}

那么用和斐波那契数列一样的做法,快速幂即可

#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
struct Matrix{int n,m;long long a[100][100];Matrix(){memset(a,0,sizeof(a));}Matrix(int _n,int _m){n=_n;m=_m;memset(a,0,sizeof(a));}
};
Matrix ans(1,3);
Matrix base(3,3);
void init(){ans.a[0][0]=1;ans.a[0][1]=1;ans.a[0][2]=1;base.a[0][0]=1;base.a[0][1]=1;base.a[0][2]=0;base.a[1][0]=0;base.a[1][1]=0;base.a[1][2]=1;base.a[2][0]=1;base.a[2][1]=0;base.a[2][2]=0;
}
Matrix mul(Matrix a,Matrix b){Matrix res(a.n,b.m);for(int i=0;i<a.n;i++){for(int j=0;j<b.m;j++){for(int k=0;k<a.m;k++){res.a[i][j]+=a.a[i][k]*b.a[k][j]%mod;}res.a[i][j]%=mod;}}return res;
}
Matrix bpow(Matrix a,long long n){Matrix res(a.n,a.n);for(int i=0;i<a.n;i++)res.a[i][i]=1;while(n!=0){if(n&1){res=mul(res,a);}a=mul(a,a);n>>=1;}return res;
}
long long F(long long n){base=bpow(base,n-3);/*for(int i=0;i<3;i++){for(int j=0;j<3;j++){cout<<base.a[i][j];}cout<<endl;}*/ans=mul(ans,base);return ans.a[0][0]%mod;
}
int main(){long long t;cin>>t;while(t--){long long n;cin>>n;if(n<=3){cout<<1<<endl;continue;}init();cout<<F(n)<<endl;}return 0;
}

2.洛谷P1349 广义斐波那契数列

其实很简单,就是把斐波那契数列的模板套一下

先写一半

相关文章:

矩阵的c++实现(2)

上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列&#xff0c;这一次我们多看看例题&#xff0c;了解什么情况下用矩阵比较合适。 先看例题 1.洛谷P1939 【模板】矩阵加速&#xff08;数列&#xff09; 模板题应该很简单。 补&#xff1a;1<n<10^9 10^9肯定…...

RPC 框架之Thrift入门(一)

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…...

【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )

文章目录 一、后置运算符重载1、前置运算符重载 与 后置运算符重载 的区别2、后置运算符重载添加 int 占位参数 上 2 2 2 篇博客 【C】运算符重载 ④ ( 一元运算符重载 | 使用 全局函数 实现 前置 自增运算符重载 | 使用 全局函数 实现 前置 - - 自减运算符重载 )【C】运算符…...

538. 把二叉搜索树转换为累加树

题目描述 给出二叉 搜索 树的根节点&#xff0c;该树的节点值各不相同&#xff0c;请你将其转换为累加树&#xff08;Greater Sum Tree&#xff09;&#xff0c;使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下&#xff0c;二叉搜索树满足下列约束…...

java8日期时间工具类

【README】 1&#xff09;本文总结了java8中日期时间常用工具方法&#xff1b;包括&#xff1a; 日期时间对象格式化为字符串&#xff1b;日期时间字符串解析为日期时间对象&#xff1b;日期时间对象转换&#xff1b; 转换过程中&#xff0c;需要注意的是&#xff1a; Instan…...

算法-动态规划/trie树-单词拆分

算法-动态规划/trie树-单词拆分 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/word-break/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 动态规划 2.1 解题思路 dp[i]表示[0, i)字符串可否构建那么dp[i]可构建的条件是&…...

React框架核心原理

一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心&#xff0c;里面封装了<Router>&#xff0c;<Route>&#xff0c;<Switch>等核心组件,实现了从路由的改变到组件的更新…...

python-pytorch 利用pytorch对堆叠自编码器进行训练和验证

利用pytorch对堆叠自编码器进行训练和验证 一、数据生成二、定义自编码器模型三、训练函数四、训练堆叠自编码器五、将已训练的自编码器级联六、微调整个堆叠自编码器 一、数据生成 随机生成一些数据来模拟训练和验证数据集&#xff1a; import torch# 随机生成数据 n_sample…...

制作 3 档可调灯程序编写

PWM 0~255 可以将数据映射到0 75 150 225 尽可能均匀电压间隔...

源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现

之前使用C语言实现了一次&#xff0c;见M3U8数据流ts的AES-128解密并合并。 学习了Go语言后&#xff0c;又用Go重新实现了一遍。源码如下&#xff0c;无第三方库依赖。 package mainimport ("crypto/aes""crypto/cipher""encoding/binary"&quo…...

CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“

这是 CSDN上的一个问题 这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗&#xff0c;还是说得用上定时器和中断函数#include <regx52.h> 我个人认为: 效果上来说, 是的! 码以 以Time / 100-Time 调 Duty, 而 for i loop成 Period, 加上延时, 实现了 PWM周期, 虽然…...

Linux系统编程系列之线程池

Linux系统编程系列&#xff08;16篇管饱&#xff0c;吃货都投降了&#xff01;&#xff09; 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…...

Linux CentOS7 vim多文件与多窗口操作

窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时&#xff0c;Vim打开一个文件也就会建立一个缓冲区&#xff0c;打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…...

SPI 通信协议

1. SPI通信 1. 什么是SPI通信协议 2. SPI的通信过程 在一开始会先把发送缓冲器的数据&#xff08;8位&#xff09;。一次性放到移位寄存器里。 移位寄存器会一位一位发送出去。但是要先放到锁存器里。然后从机来读取。从机的过程也一样。当移位寄存器的数据全部发送完。其实…...

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

5个适合初学者的初级网络安全工作,网络安全就业必看

前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级&#xff0c;对网络专业人员的需求很高&#xff0c;这并…...

Kafka核心原理

1、Topic的分片和副本机制 分片作用&#xff1a; 解决单台节点容量有限的问题&#xff0c;节点多&#xff0c;效率提升&#xff0c;吞吐量提升。通过分片&#xff0c;将一个大的容器分解为多个小的容器&#xff0c;分布在不同的节点上&#xff0c;从而实现分布式存储。 分片…...

探秘前后端开发世界:猫头虎带你穿梭编程的繁忙街区,解锁全栈之路

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

洛谷_分支循环

p2433 问题 5 甲列火车长 260 米&#xff0c;每秒行 12 米&#xff1b;乙列火车长220 米&#xff0c;每秒行 20 米&#xff0c;两车相向而行&#xff0c;从两车车头相遇时开始计时&#xff0c;多长时间后两车车尾相离&#xff1f;已知答案是整数。 计算方式&#xff1a;两车车…...

MySQL数据库入门到精通——进阶篇(3)

黑马程序员 MySQL数据库入门到精通——进阶篇&#xff08;3&#xff09; 1. 锁1.1 锁-介绍1.2 锁-全局锁1.3 锁-表级锁1.3.1 表级锁-表锁1.3.2 表级锁元数据锁( meta data lock&#xff0c;MDL)1.3.3 表级锁-意向锁1.3.4 表级锁意向锁测试 1.4 锁-行级锁1.4.1 行级锁-行锁1.4.2…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...