当前位置: 首页 > news >正文

坦克世界WOT知识图谱三部曲之爬虫篇

文章目录

  • 关于坦克世界
  • 1. 爬虫任务
  • 2. 获取坦克列表
  • 3. 获取坦克具体信息
  • 结束语

关于坦克世界

  《坦克世界》(World of Tanks, WOT)是我在本科期间玩过的一款战争网游,由Wargaming公司研发。2010年10月30日在俄罗斯首发,2011年4月12日在北美和欧洲推出,2011年3月15日在中国由空中网代理推出(2020年,国服由360代理)。游戏背景设定在二战时期,玩家会扮演1930到1960年代的战车进行对战,要求战略和合作性,游戏中的战车根据历史高度还原。

  坦克世界官网:https://wotgame.cn/
  坦克世界坦克百科:https://wotgame.cn/zh-cn/tankopedia/#wot&w_m=tanks

在这里插入图片描述

1. 爬虫任务

在这里插入图片描述
  当前的WOT有五种坦克类型,11个系别。我们要构建一个关于坦克百科的知识图谱,接下来就要通过爬虫来获取所有坦克的详细信息,比如坦克的等级、火力、机动性、防护能力、侦察能力等等。以当前的八级霸主中国重型坦克BZ-176为例,坦克的详细信息如下:

在这里插入图片描述
在这里插入图片描述

2. 获取坦克列表

在这里插入图片描述
  常规操作,F12+F5查看一下页面信息,定位到坦克列表的具体请求:

在这里插入图片描述
  是一个POST请求,返回的是一个JSON格式的数据,包含了该类型坦克的一些基本信息:

在这里插入图片描述
  POST请求参数如下:

在这里插入图片描述

  特别说明一下:构建该请求header时,Content-Length参数是必须的。

  代码实现:

# -*- coding: utf-8 -*-
# Author  : xiayouran
# Email   : youran.xia@foxmail.com
# Datetime: 2023/9/29 22:43
# Filename: spider_wot.py
import os
import time
import json
import requestsclass WOTSpider:def __init__(self):self.base_headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ''Chrome/117.0.0.0 Safari/537.36','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9',}self.post_headers = {'Accept': 'application/json, text/javascript, */*; q=0.01','Content-Length': '135','Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}self.from_data = {'filter[nation]': '','filter[type]': 'lightTank','filter[role]': '','filter[tier]': '','filter[language]': 'zh-cn','filter[premium]': '0,1'}self.tank_list_url = 'https://wotgame.cn/wotpbe/tankopedia/api/vehicles/by_filters/'self.tank_label = ['lightTank', 'mediumTank', 'heavyTank', 'AT-SPG', 'SPG']self.tanks = {}def parser_tanklist_html(self, html_text):json_data = json.loads(html_text)for data in json_data['data']['data']:self.tanks[data[0] + '_' + data[4]] = {'tank_nation': data[0],'tank_type': data[1],'tank_rank': data[3],'tank_name': data[4],'tank_name_s': data[5],'tank_url': data[6],'tank_id': data[7]}def run(self):for label in self.tank_label:self.from_data['filter[type]'] = labelhtml_text = self.get_html(self.tank_list_url, method='POST', from_data=self.from_data)if not html_text:print('[{}] error'.format(label))continueself.parser_tanklist_html(html_text)time.sleep(3)self.save_json(os.path.join(self.data_path, 'tank_list.json'), self.tanks)if __name__ == '__main__':tank_spider = WOTSpider()tank_spider.run()

  上述代码只实现了一些重要的函数及变量声明,完整的代码可以从github上拉取:WOT

3. 获取坦克具体信息

  坦克具体信息的页面就是一个纯HTML页面了,一个GET请求就可以获得。当然啦,具体怎么分析的就不细说了,对爬虫技术感兴趣的同学们可以找找资料,这里就只说一下抓取流程。
  先分析GET请求:https://wotgame.cn/zh-cn/tankopedia/60209-Ch47_BZ_176/,可以分成三部分:
  Part 1:基本的url请求:https://wotgame.cn/zh-cn/tankopedia
  Part 2:坦克的idBZ-176坦克的id60209,每个坦克都是唯一的,这个参数通过上一个步骤的POST请求可以获取到;
  Part 3:坦克的名称:Ch47_BZ_176,这个参数也可以通过上一个步骤的POST请求可以获取到。
  这样就可以为每个坦克构造一个对应的url了,只需解析该url对应的界面即可。解析的时候我分成了两部分,先对坦克的基本信息进行解析,比如坦克系别、等级及价格等等,由BeautifulSoup库实现,坦克的具体信息,比如火力、机动、防护及侦察能力,这些信息是由JavaScript代码动态请求得到的,这里为了简便没有分析具体的js代码,而是先使用selenium库进行网页渲染,然后再使用BeautifulSoup库进行解析。这里不再细说,下面给出页面解析的代码:

# -*- coding: utf-8 -*-
# Author  : xiayouran
# Email   : youran.xia@foxmail.com
# Datetime: 2023/9/29 22:43
# Filename: spider_wot.py
import requests
from tqdm import tqdm
from bs4 import BeautifulSoup, Tag
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWaitclass WOTSpider:def __init__(self):passdef is_span_with_value(self, driver):try:element = driver.find_element(By.XPATH, "//span[@data-bind=\"text: ttc().getFormattedBestParam('maxHealth', 'gt')\"]")data = element.text.strip()if data:return Trueexcept:return Falsedef get_html_driver(self, url):self.driver.get(url)self.wait.until(self.is_span_with_value)page_source = self.driver.page_sourcereturn page_sourcedef parser_tankinfo_html(self, html_text):tank_info = copy.deepcopy(self.tank_info)soup = BeautifulSoup(html_text, 'lxml')# tank_name = soup.find(name='h1', attrs={'class': 'garage_title garage_title__inline js-tank-title'}).strip()tank_statistic = soup.find_all(name='div', attrs={'class': 'tank-statistic_item'})for ts in tank_statistic:ts_text = [t for t in ts.get_text().split('\n') if t]if len(ts_text) == 5:tank_info['价格'] = {'银币': ts_text[-3],'经验': ts_text[-1]}else:tank_info[ts_text[0]] = ts_text[-1]tank_property1 = soup.find(name='p', attrs='garage_objection')tank_property2 = soup.find(name='p', attrs='garage_objection garage_objection__collector')if tank_property1:tank_info['性质'] = tank_property1.textelif tank_property2:tank_info['性质'] = tank_property2.textelse:tank_info['性质'] = '银币坦克'tank_desc_tag = soup.find(name='p', attrs='tank-description_notification')if tank_desc_tag:tank_info['历史背景'] = tank_desc_tag.texttank_parameter = soup.find_all(name='div', attrs={'class': 'specification_block'})for tp_tag in tank_parameter:param_text = tp_tag.find_next(name='h2', attrs={'class': 'specification_title specification_title__sub'}).get_text()# spec_param = tp_tag.find_all_next(name='div', attrs={'class': 'specification_item'})spec_param = [tag for tag in tp_tag.contents if isinstance(tag, Tag) and tag.attrs['class'] == ['specification_item']]spec_info = {}for tp in spec_param:tp_text = [t for t in tp.get_text().replace(' ', '').split('\n') if t]if not tp_text or not tp_text[0][0].isdigit():continuespec_info[tp_text[-1]] = ' '.join(tp_text[:-1])tank_info[param_text] = spec_inforeturn tank_infodef run(self):file_list = [os.path.basename(file)[:-5] for file in glob.glob(os.path.join(self.data_path, '*.json'))]for k, item in tqdm(self.tanks.items(), desc='Crawling'):file_name = k.replace('"', '').replace('“', '').replace('”', '').replace('/', '-').replace('\\', '').replace('*', '+')if file_name in file_list:continuetank_url = self.tank_url + str(item['tank_id']) + '-' + item['tank_url']html_text = self.get_html_driver(tank_url)# html_text = self.get_html(tank_url, method='GET')tank_info = self.parser_tankinfo_html(html_text)self.tanks[k].update(tank_info)self.save_json(os.path.join(self.data_path, '{}.json'.format(file_name)), self.tanks[k])time.sleep(1.5)self.save_json(os.path.join(self.data_path, 'tank_list_detail.json'), self.tanks)if __name__ == '__main__':tank_spider = WOTSpider()tank_spider.run()

  大约半个小时即可获取全部的坦克信息,如下:

在这里插入图片描述

  Selenium 库依赖chromedriver,需要根据自己的Chrome浏览器版本下载合适的版本,chromedriver的官方下载地址为:https://chromedriver.chromium.org/downloads/version-selection

结束语

  本篇的完整代码及爬取的结果已经同步到仓库中,感兴趣的话可以拉取一下,下一篇文章就基于当前获取到的坦克信息来构造一个关于坦克百科的知识图谱。

开源代码仓库


  如果喜欢的话记得给我的GitHub仓库WOT点个Star哦!ヾ(≧∇≦*)ヾ


  公众号已开通:夏小悠,关注以获取更多关于Python文章、AI领域最新技术、LLM大模型相关论文及内部PPT等资料^_^

相关文章:

坦克世界WOT知识图谱三部曲之爬虫篇

文章目录 关于坦克世界1. 爬虫任务2. 获取坦克列表3. 获取坦克具体信息结束语 关于坦克世界 《坦克世界》(World of Tanks, WOT)是我在本科期间玩过的一款战争网游,由Wargaming公司研发。2010年10月30日在俄罗斯首发,2011年4月12日在北美和欧洲推出&…...

Idea上传项目到gitlab并创建使用分支

Idea上传项目到gitlab并创建使用分支 1 配置git 在idea的setting中,找到git,配置好git的位置,点击Test按钮显示出git版本号,则说明配置成功。 2 项目中引入git Idea通过VCS,选择Create Git Repository 在弹出的对话框…...

3D孪生场景搭建:参数化模型

1、什么是参数化模型 参数化模型是指通过一组参数来定义其形状和特征的数学模型或几何模型。这些参数可以用于控制模型的大小、形状、比例、位置、旋转、曲率等属性,从而实现对模型进行灵活的调整和变形。 在计算机图形学和三维建模领域,常见的参数化模…...

最短路径专题6 最短路径-多路径

题目: 样例: 输入 4 5 0 2 0 1 2 0 2 5 0 3 1 1 2 1 3 2 2 输出 2 0->1->2 0->3->2 思路: 根据题意,最短路模板还是少不了的, 我们要添加的是, 记录各个结点有多少个上一个结点走动得来的…...

【Linux】Linux常用命令—文件管理(上)

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…...

【Python】基于OpenCV人脸追踪、手势识别控制的求生之路FPS游戏操作

【Python】基于OpenCV人脸追踪、手势识别控制的求生之路FPS游戏操作 文章目录 手势识别人脸追踪键盘控制整体代码附录&#xff1a;列表的赋值类型和py打包列表赋值BUG复现代码改进优化总结 py打包 视频&#xff1a; 基于OpenCV人脸追踪、手势识别控制的求实之路FPS游戏操作 手…...

约束优化算法(optimtool.constrain)

import optimtool as oo from optimtool.base import np, sp, pltpip install optimtool>2.4.2约束优化算法&#xff08;optimtool.constrain&#xff09; import optimtool.constrain as oc oc.[方法名].[函数名]([目标函数], [参数表], [等式约束表], [不等式约数表], [初…...

如何查看postgresql中的数据库大小?

你可以使用以下命令来查看PostgreSQL数据库的大小&#xff1a; SELECT pg_database.datname as "database_name", pg_size_pretty(pg_database_size(pg_database.datname)) AS size_in_mb FROM pg_database ORDER by size_in_mb DESC;这将返回一个表格&#xff0…...

使用python-opencv检测图片中的人像

最简单的方法进行图片中的人像检测 使用python-opencv配合yolov3模型进行图片中的人像检测 1、安装python-opencv、numpy pip install opencv-python pip install numpy 2、下载yolo模型文件和配置文件&#xff1a; 下载地址&#xff1a; https://download.csdn.net/down…...

项目进展(三)-电机驱动起来了,发现了很多关键点,也遇到了一些低级错误,

一、前言 昨天电机没有驱动起来&#xff0c;头发掉一堆&#xff0c;不过今天&#xff0c;终于终于终于把电机驱动起来了&#xff01;&#xff01;&#xff01;&#xff01;&#xff0c;特别开心&#xff0c;哈哈哈哈&#xff0c;后续继续努力完善&#xff01;&#xff01;&…...

目标检测算法改进系列之Backbone替换为RepViT

RepViT简介 轻量级模型研究一直是计算机视觉任务中的一个焦点&#xff0c;其目标是在降低计算成本的同时达到优秀的性能。轻量级模型与资源受限的移动设备尤其相关&#xff0c;使得视觉模型的边缘部署成为可能。在过去十年中&#xff0c;研究人员主要关注轻量级卷积神经网络&a…...

学习 Kubernetes的难点和安排

Kubernetes 技术栈的特点可以用四个字来概括&#xff0c;那就是“新、广、杂、深”&#xff1a; 1.“新”是指 Kubernetes 用到的基本上都是比较前沿、陌生的技术&#xff0c;而且版本升级很快&#xff0c;经常变来变去。 2.“广”是指 Kubernetes 涉及的应用领域很多、覆盖面非…...

【MATLAB源码-第42期】基于matlab的人民币面额识别系统(GUI)。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 基于 MATLAB 的人民币面额识别系统设计可以分为以下步骤&#xff1a; 1. 数据收集与预处理 数据收集&#xff1a; 收集不同面额的人民币照片&#xff0c;如 1 元、5 元、10 元、20 元、50 元和 100 元。确保在不同环境、不…...

【软件测试】软件测试的基础概念

一、一个优秀的测试人员需要具备的素质 技能方面&#xff1a; 优秀的测试用例设计能力&#xff1a;测试用例设计能力是指&#xff0c;无论对于什么类型的测试&#xff0c;都能够设计出高效的发现缺陷&#xff0c;保证产品质量的优秀测试用例。这就需要我们掌握设计测试用例的方…...

Docker-mysql,redis安装

安装MySQL 下载MySQL镜像 终端运行命令 docker pull mysql:8.0.29镜像下载完成后&#xff0c;需要配置持久化数据到本地 这是mysql的配置文件和存储数据用的目录 切换到终端&#xff0c;输入命令&#xff0c;第一次启动MySQL容器 docker run --restartalways --name mysq…...

五种I/O模型

目录 1、阻塞IO模型2、非阻塞IO模型3、IO多路复用模型4、信号驱动IO模型5、异步IO模型总结 blockingIO - 阻塞IOnonblockingIO - 非阻塞IOIOmultiplexing - IO多路复用signaldrivenIO - 信号驱动IOasynchronousIO - 异步IO 5种模型的前4种模型为同步IO&#xff0c;只有异步IO模…...

用nativescript开发ios程序常用命令?

NativeScript是一个用于跨平台移动应用程序开发的开源框架&#xff0c;允许您使用JavaScript或TypeScript构建原生iOS和Android应用程序。以下是一些常用的NativeScript命令&#xff0c;用于开发iOS应用程序&#xff1a; 1、创建新NativeScript项目&#xff1a; tns create m…...

6.Tensors For Beginners-What are Convector

Covectors &#xff08;协向量&#xff09; What‘s a covector Covectors are “basically” Row Vectors 在一定程度上&#xff0c;可认为 协向量 基本上就像 行向量。 但不能简单地认为 这就是列向量进行转置&#xff01; 行向量 和 列向量 是根本不同类型的对象。 …...

Linux多线程网络通信

思路&#xff1a;主线程&#xff08;只有一个&#xff09;建立连接&#xff0c;就创建子线程。子线程开始通信。 共享资源&#xff1a;全局数据区&#xff0c;堆区&#xff0c;内核区描述符。 线程同步不同步需要取决于线程对共享资源区的数据的操作&#xff0c;如果是只读就不…...

矩阵的c++实现(2)

上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列&#xff0c;这一次我们多看看例题&#xff0c;了解什么情况下用矩阵比较合适。 先看例题 1.洛谷P1939 【模板】矩阵加速&#xff08;数列&#xff09; 模板题应该很简单。 补&#xff1a;1<n<10^9 10^9肯定…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...