五种I/O模型
目录
- 1、阻塞IO模型
- 2、非阻塞IO模型
- 3、IO多路复用模型
- 4、信号驱动IO模型
- 5、异步IO模型
- 总结
- blockingIO - 阻塞IO
- nonblockingIO - 非阻塞IO
- IOmultiplexing - IO多路复用
- signaldrivenIO - 信号驱动IO
- asynchronousIO - 异步IO
5种模型的前4种模型为同步IO,只有异步IO模型是异步IO操作
首先,我们知道对于一个网络输入操作通常包括两个不同阶段:
第一阶段:等待网络数据到达网卡→读取到内核缓冲区(数据准备好)
第二阶段:从内核缓冲区复制数据到进程缓冲区(复制数据了)
这很显然是两个操作,所以我们重点关注以下2点操作:
A、等待数据读取到内核缓冲区(数据准备)
B、复制内核缓冲区数据到进程缓冲区(数据复制)
1、阻塞IO模型
进程发起IO系统调用后,进程被阻塞,转到内核空间处理,整个IO处理完毕后返回进程。
调用者调用了某个函数,等待这个函数返回,期间什么也不做,不停的去检查这个函数有没有返回,必须等这个函数返回才能进行下一步动作。
即:A阻塞,B阻塞
举例:
你准备去书店买书,但老板不在,留了电话
你打电话问老板:有没有《三体》卖?
老板查了一下说:书店里没有《三体》,我打个电话让供应商送货,你等一下
然后你就一直在书店里等着,不吃饭,不睡觉(进入A阶段,等待数据,陷入了IO阻塞)
过了一段时间,供应商把书送到书店
老板打电话给你:书已经到了,你有空吗?等你有空,我才当面把书交给你(进入B阶段,数据复制,阻塞住了)
交易完成
2、非阻塞IO模型
进程发起IO系统调用后,如果内核缓冲区没有数据,需要到IO设备中读取,进程返回一个错误而不会被阻塞,但会一直轮询内核缓冲区数据准备好了没。进程发起IO系统调用后,如果内核缓冲区有数据,内核就会把数据返回进程。
非阻塞等待,每隔一段时间就去检测IO事件是否就绪。没有就绪就可以做其他事。非阻塞I/O执行系统调用总是立即返回,不管时间是否已经发生,若时间没有发生,则返回-1,此时可以根据errno区分这两种情况,对于accept,recv和send,事件未发生时,errno通常被设置成eagain。
即:A不阻塞,B阻塞
举例:
你准备去书店买书,但老板不在,留了电话
你打电话问老板:有没有《三体》卖?
老板查了一下说:书店里没有《三体》,我打个电话让供应商送货,你先回家去吧,过几天再来问(进入A阶段,等待数据,但非阻塞)
想象:你回到家,该吃就吃,该喝就喝,隔了1周后才打电话问老板书到了没?(非阻塞,继续做别的事情)
但一般编程,都会设置轮询IO,即:
实际:你回到家,循环不停地打电话给老板,我的书到了没?(陷入事实上的轮询IO阻塞,相当于死循环,即使属于非阻塞模型)
过了1个小时,老板说:书已经到了,你有空吗?等你有空,我才当面把书交给你(进入B阶段,数据复制,阻塞住了)
交易完成
3、IO多路复用模型
多个进程的IO可以注册到一个复用器(select)上,然后用一个进程调用该复用器(select)。 复用器(select)会监听所有注册进来的IO。如果复用器(select)所监听的IO在内核缓冲区都没有可读数据,复用器(select)调用进程会被阻塞;而当任一IO在内核缓冲区中有可数据时,复用器(select)调用就会返回。之后复用器(select)通知注册进程来再次发起读取IO,读取内核中准备好的数据。
linux用select/poll函数实现IO复用模型,这两个函数也会使进程阻塞,但是和阻塞IO所不同的是这两个函数可以同时阻塞多个IO操作。而且可以同时对多个读操作、写操作的IO函数进行检测。知道有数据可读或可写时,才真正调用IO操作函数。
即:A不阻塞,B阻塞
举例:
对于书店老板来说,他对接的是多个客人。你,张三,李四都打电话给老板,要买书
你买《三体》,张三买《鲁迅》,李四买《史记》,然后最坏的情况,3本书老板都没有
老板说:我打个电话让供应商送货,你们先别一直打电话,书到了我再打电话让你们过来取
实际:你,张三,李四挂了电话,就去吃饭睡觉,做自己的事了(进入A阶段,等待数据,但非阻塞)
老板一直等不到供应商来送货,但自己需要一直等待着(陷入事实上的select/poll/epoll阻塞)
此时供应商送来一本书,但老板不知道属于谁,得遍历一边购书单,发现是你的书
老板打电话给你:书已经到了,你有空吗?等你有空,我才当面把书交给你(进入B阶段,数据复制,阻塞住了)
交易完成
4、信号驱动IO模型
当进程发起一个IO操作,会向内核注册一个信号处理函数 ,然后进程返回;当内核数据就绪时会发送一个信号给进程,进程便在信号处理函数中调用IO读取数据
linux用套接口进行信号驱动IO,安装一个信号处理函数,进程继续运行并不阻塞,当IO时间就绪,进程收到SIGIO信号。然后处理IO事件。
即:A不阻塞,B阻塞
举例:
你准备去书店买书,但老板不在,留了电话
你打电话问老板:有没有《三体》卖?
老板查了一下说:书店里没有《三体》
然后你说:我给你留个收货地址。如果书到了,你打电话给我,我会让别人在这个地址接收你的书
然后你就回家去了,该干嘛干嘛(进入A阶段,等待数据,但留了回调函数,非阻塞)
老板打电话给你:书已经到了,让你的人准备好,我才当面把书交给你的人(进入B阶段,数据复制,阻塞住了)
交易完成
5、异步IO模型
当进程发起一个IO操作,进程立即返回,但也不返回结果;内核把整个IO处理完后,会通知进程结果。如果IO操作成功则进程直接获取到数据。所谓的通知进程结果,是指:包含将数据从内核复制到应该进程的缓冲区,完成后通知应用进程,也就是说,已经完成了A B 2个步骤了,才通知请求进程,此时请求进程直接获取到数据,根本不会阻塞,即所谓的异步。
linux中,可以调用aio_read函数告诉内核描述字缓冲区指针和缓冲区的大小、文件偏移及通知的方式,然后立即返回,当内核将数据拷贝到缓冲区后,再通知应用程序。
即:A不阻塞,B不阻塞
你准备去书店买书,但老板不在,留了电话
你打电话问老板:有没有《三体》卖?
老板查了一下说:书店里没有《三体》,你留个地址,书到了我会把书送到你家去
然后你就回家去了,该干嘛干嘛(进入A阶段,等待数据,非阻塞)
老板接收到供应商的书,把书放到你家楼下,而此时你在家睡觉(进入B阶段,数据复制,非阻塞)
老板打电话给你:书已经到了,在你家楼下,自己去拿吧
交易完成
总结
根据上面所说的IO操作的两个阶段,可以把上面的I/O模型进行如下归类:
阻塞IO:在两个阶段上面都是阻塞的,A阶段阻塞,B阶段还是阻塞
非阻塞IO:在A不阻塞(但陷入事实上的轮询IO阻塞),B阶段还是阻塞的
IO复用:A阶段不阻塞(陷入事实上的select/poll/epoll阻塞),B阶段还是阻塞的
信号IO:A阶段不阻塞,当信号通知程序数据准备完毕,B阶段还是阻塞的
异步IO:A阶段不阻塞,B阶段不阻塞
现在,我们可以看到,前4种IO模型的B阶段:数据复制阶段都是阻塞,也就是按POSIX标准来说的同步IO,最后1种异步IO模型,才是按POSIX标准来说的异步IO。
同步一般指主动请求并等待I/O操作完毕的方式,I/O操作未完成前,会导致应用进程挂起
而异步是指用户进程触发IO操作以后便开始做自己的事情,而当IO操作已经完成的时候会得到IO完成的通知(异步的特点就是通知),这可以使进程在数据读写时也不阻塞
阻塞或者非阻塞I/O主要是指I/O操作第一阶段的完成方式(进程访问的数据如果尚未就绪),即数据还未准备好的时候,应用进程的表现
如果这里进程挂起,则为阻塞I/O,否则为非阻塞I/O,主要是描述进程在数据未准备好时的状态,根据进程等待数据时的状态来判断
阻塞和非阻塞是针对于进程在访问数据的时候,根据IO操作的就绪状态来采取的不同方式:
说白了就是一种读取或者写入操作函数的实现方式,阻塞方式下读取或者写入函数将一直等待
而非阻塞方式下,读取或者写入函数会立即返回一个状态值
相关文章:
五种I/O模型
目录 1、阻塞IO模型2、非阻塞IO模型3、IO多路复用模型4、信号驱动IO模型5、异步IO模型总结 blockingIO - 阻塞IOnonblockingIO - 非阻塞IOIOmultiplexing - IO多路复用signaldrivenIO - 信号驱动IOasynchronousIO - 异步IO 5种模型的前4种模型为同步IO,只有异步IO模…...
用nativescript开发ios程序常用命令?
NativeScript是一个用于跨平台移动应用程序开发的开源框架,允许您使用JavaScript或TypeScript构建原生iOS和Android应用程序。以下是一些常用的NativeScript命令,用于开发iOS应用程序: 1、创建新NativeScript项目: tns create m…...
6.Tensors For Beginners-What are Convector
Covectors (协向量) What‘s a covector Covectors are “basically” Row Vectors 在一定程度上,可认为 协向量 基本上就像 行向量。 但不能简单地认为 这就是列向量进行转置! 行向量 和 列向量 是根本不同类型的对象。 …...
Linux多线程网络通信
思路:主线程(只有一个)建立连接,就创建子线程。子线程开始通信。 共享资源:全局数据区,堆区,内核区描述符。 线程同步不同步需要取决于线程对共享资源区的数据的操作,如果是只读就不…...
矩阵的c++实现(2)
上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列,这一次我们多看看例题,了解什么情况下用矩阵比较合适。 先看例题 1.洛谷P1939 【模板】矩阵加速(数列) 模板题应该很简单。 补:1<n<10^9 10^9肯定…...
RPC 框架之Thrift入门(一)
📋 个人简介 💖 作者简介:大家好,我是阿牛,全栈领域优质创作者。😜📝 个人主页:馆主阿牛🔥🎉 支持我:点赞👍收藏⭐️留言Ὅ…...
【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )
文章目录 一、后置运算符重载1、前置运算符重载 与 后置运算符重载 的区别2、后置运算符重载添加 int 占位参数 上 2 2 2 篇博客 【C】运算符重载 ④ ( 一元运算符重载 | 使用 全局函数 实现 前置 自增运算符重载 | 使用 全局函数 实现 前置 - - 自减运算符重载 )【C】运算符…...
538. 把二叉搜索树转换为累加树
题目描述 给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下,二叉搜索树满足下列约束…...
java8日期时间工具类
【README】 1)本文总结了java8中日期时间常用工具方法;包括: 日期时间对象格式化为字符串;日期时间字符串解析为日期时间对象;日期时间对象转换; 转换过程中,需要注意的是: Instan…...
算法-动态规划/trie树-单词拆分
算法-动态规划/trie树-单词拆分 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/word-break/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 动态规划 2.1 解题思路 dp[i]表示[0, i)字符串可否构建那么dp[i]可构建的条件是&…...
React框架核心原理
一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心,里面封装了<Router>,<Route>,<Switch>等核心组件,实现了从路由的改变到组件的更新…...
python-pytorch 利用pytorch对堆叠自编码器进行训练和验证
利用pytorch对堆叠自编码器进行训练和验证 一、数据生成二、定义自编码器模型三、训练函数四、训练堆叠自编码器五、将已训练的自编码器级联六、微调整个堆叠自编码器 一、数据生成 随机生成一些数据来模拟训练和验证数据集: import torch# 随机生成数据 n_sample…...
制作 3 档可调灯程序编写
PWM 0~255 可以将数据映射到0 75 150 225 尽可能均匀电压间隔...
源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现
之前使用C语言实现了一次,见M3U8数据流ts的AES-128解密并合并。 学习了Go语言后,又用Go重新实现了一遍。源码如下,无第三方库依赖。 package mainimport ("crypto/aes""crypto/cipher""encoding/binary"&quo…...
CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“
这是 CSDN上的一个问题 这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗,还是说得用上定时器和中断函数#include <regx52.h> 我个人认为: 效果上来说, 是的! 码以 以Time / 100-Time 调 Duty, 而 for i loop成 Period, 加上延时, 实现了 PWM周期, 虽然…...
Linux系统编程系列之线程池
Linux系统编程系列(16篇管饱,吃货都投降了!) 1、Linux系统编程系列之进程基础 2、Linux系统编程系列之进程间通信(IPC)-信号 3、Linux系统编程系列之进程间通信(IPC)-管道 4、Linux系统编程系列之进程间通信-IPC对象 5、Linux系统…...
Linux CentOS7 vim多文件与多窗口操作
窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时,Vim打开一个文件也就会建立一个缓冲区,打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…...
SPI 通信协议
1. SPI通信 1. 什么是SPI通信协议 2. SPI的通信过程 在一开始会先把发送缓冲器的数据(8位)。一次性放到移位寄存器里。 移位寄存器会一位一位发送出去。但是要先放到锁存器里。然后从机来读取。从机的过程也一样。当移位寄存器的数据全部发送完。其实…...
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
5个适合初学者的初级网络安全工作,网络安全就业必看
前言 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级,对网络专业人员的需求很高,这并…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
