当前位置: 首页 > news >正文

图示矩阵分解

特征值与特征向量

A A A 是 n 阶矩阵,如果存在数 λ \lambda λ 和 n 维非零列向量 x x x,满足关系式:

A x = λ x ( 1 ) Ax = \lambda x\quad\quad(1) Ax=λx(1)

则数 λ \lambda λ 称为矩阵 A A A 的特征值,非零向量 x x x 称为矩阵 A A A 的特征向量.

关系式(1)推导得到 ( A − λ E ) x = 0 (A - \lambda E)x = 0 (AλE)x=0,存在非零解 x x x 的充分必要条件为系数行列式为零:

∣ A − λ E ∣ = 0 ( 2 ) |A-\lambda E| = 0\quad\quad(2) AλE=0(2)

上式是以 λ \lambda λ 为未知数的一元 n 次方程,称为矩阵 A A A 的特征方程。特征方程在复数范围内恒有解,解的个数为方程的次数(重根按重数计算),因此,n 阶矩阵 A A A 在复数范围内有 n 个特征值。

设 n 阶矩阵 A = ( a i j ) A = (a_{ij}) A=(aij) 的特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1, \lambda_2,...,\lambda_n λ1,λ2,...,λn

  • ∑ i = 1 n λ i = ∑ i = 1 n a i i = t r ( A ) \sum_{i=1}^n\lambda_i = \sum_{i=1}^na_{ii} = tr(A) i=1nλi=i=1naii=tr(A)
  • ∏ i = 1 n λ i = ∣ A ∣ \prod_{i=1}^n\lambda_i = |A| i=1nλi=A
  • A 可逆的充分必要条件是 n 个特征值全不为零

有如下性质:

  • λ \lambda λ 是方阵 A A A 的特征值,则 λ 2 \lambda^2 λ2 A 2 A^2 A2 的特征值;当 A A A 可逆时, 1 / λ 1/\lambda 1/λ A − 1 A^{-1} A1的特征值.

A , B A,B AB 都是 n 阶矩阵,若有可逆矩阵 P P P ,使:

P − 1 A P = B P^{-1}AP = B P1AP=B

则称 B 是 A 的相似矩阵。 P − 1 A P P^{-1}AP P1AP 称为 A 的相似变换。

定理:相似矩阵的特征值相同.

对于 n 阶矩阵 A , 若存在矩阵 P 满足 P − 1 A P = Λ P^{-1}AP =\Lambda P1AP=Λ,则称矩阵 A 可对角化。

定理:一个 n 阶方阵 A 如果有 n 个不同的特征值,那么对应的 n 个特征向量互相线性独立

定理:任何 n 阶对称矩阵都有 n 个独立且正交的特征向量

图解特征值的含义:

A特征值&特征向量xAx
[ 0.5 1 0 2 ] \begin{bmatrix} 0.5 & 1 \\ 0 & 2 \end{bmatrix} [0.5012] λ 1 = 0.5 , p 1 = [ 1 , 0 ] T λ 2 = 2 , p 2 = [ 0 , 1 ] T \lambda_1 = 0.5, p_1 = [1, 0]^T \\ \lambda_2= 2, p_2 = [0, 1]^T λ1=0.5,p1=[1,0]Tλ2=2,p2=[0,1]T请添加图片描述请添加图片描述
[ 1 − 1 − 1 1 ] \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} [1111] λ 1 = 0 , p 1 = [ 1 , 1 ] T λ 2 = 2 , p 2 = [ − 1 , 1 ] T \lambda_1 = 0, p_1 = [1, 1]^T \\ \lambda_2= 2, p_2 = [-1, 1]^T λ1=0,p1=[1,1]Tλ2=2,p2=[1,1]T请添加图片描述请添加图片描述
[ 3 − 1 − 1 3 ] \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} [3113] λ 1 = 2 , p 1 = [ 1 , 1 ] T λ 2 = 4 , p 2 = [ − 1 , 1 ] T \lambda_1 = 2, p_1 = [1, 1]^T \\ \lambda_2= 4, p_2 = [-1, 1]^T λ1=2,p1=[1,1]Tλ2=4,p2=[1,1]T请添加图片描述请添加图片描述
Cholesky 分解(Cholesky Decomposition)

把一个对称正定的矩阵表示成一个下三角矩阵 L 与其转置的乘积的形式。

A = L L T A = LL^T A=LLT

特征值分解(Eigen Decomposition)

对角化条件:当且仅当A满秩(有n个独立的特征向量)时,有 A = P − 1 D P A = P^{-1}DP A=P1DP,P 为A的特征矩阵组成的可逆矩阵,D是有A的特征值组成的对角矩阵。

任何对称矩阵都可以对角化:

S = P D P − 1 S = PDP^{-1} S=PDP1

其中 P 是由 n 个正交特征向量组成的矩阵,D 是有特征值组成的对角矩阵。

图解特征值分解:

S = P D P − 1 S=PDP^{-1} S=PDP1x P − 1 x P^{-1}x P1x D P − 1 x DP^{-1}x DP1x P D P − 1 x PDP^{-1}x PDP1x
[ 2 − 1 − 1 2 ] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = [2112]=
[ 1 1 1 − 1 ] [ 1 0 0 3 ] [ 1 2 1 2 1 2 − 1 2 ] \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} [1111][1003][21212121]
请添加图片描述请添加图片描述请添加图片描述请添加图片描述
奇异值分解(Singular Value Decomposition)

SVD定理:设矩阵 A m × n A^{m\times n} Am×n 的秩为 r ∈ ( 0 , m i n ( m , n ) ) r\in (0, min(m,n)) r(0,min(m,n)),矩阵 A 的奇异值分解形式如下

A = U Σ V T A = U\Sigma V^T A=UΣVT

其中 U ∈ R m × m , V ∈ R n × n U\in R^{m\times m},V\in R^{n\times n} URm×mVRn×n 是正交矩阵, Σ ∈ R m × n \Sigma\in R^{m\times n} ΣRm×n 满足 Σ i i = σ i ≥ 0 , Σ i j = 0 , i ≠ j \Sigma_{ii} = \sigma_i \ge 0, \Sigma_{ij} = 0, i\ne j Σii=σi0,Σij=0,i=j σ i \sigma_i σi称为奇异值。

图解奇异值分解:

A = U Σ V T A = U\Sigma V^T A=UΣVTx V T x V^Tx VTx Σ V T x \Sigma V^T x ΣVTx U Σ V T x U\Sigma V^T x UΣVTx
[ 1 1 1 1 0 0 ] = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = 110110 =
[ 1 2 − 1 2 0 1 2 1 2 0 0 0 1 ] [ 2 0 0 0 0 0 ] [ 1 2 − 1 2 1 2 1 2 ] T \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T 2 12 102 12 10001 200000 [2 12 12 12 1]T
请添加图片描述请添加图片描述请添加图片描述请添加图片描述
[ 0 1 1 1 1 0 ] = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = 011110 =
[ 1 6 1 2 1 3 2 6 0 − 1 3 1 6 − 1 2 1 3 ] [ 3 0 0 1 0 0 ] [ 1 2 − 1 2 1 2 1 2 ] T \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix}\begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T 6 16 26 12 102 13 13 13 1 3 00010 [2 12 12 12 1]T
请添加图片描述请添加图片描述请添加图片描述请添加图片描述

相关文章:

图示矩阵分解

特征值与特征向量 设 A A A 是 n 阶矩阵,如果存在数 λ \lambda λ 和 n 维非零列向量 x x x,满足关系式: A x λ x ( 1 ) Ax \lambda x\quad\quad(1) Axλx(1) 则数 λ \lambda λ 称为矩阵 A A A 的特征值,非零向量 x…...

六、互联网技术——数据存储

文章目录 一、存储系统层次结构二、按照重要性分类三、磁盘阵列RAID三、RAID基础四、磁盘阵列分级五、数据备份与恢复六、容灾与灾难恢复 一、存储系统层次结构 常见的三层存储体系结构如下图所示,分为高速缓冲存储器、主存储器和外存储器。 二、按照重要性分类 …...

六、vpp 流表+负载均衡

草稿!!! vpp node其实就是三个部分 1、plugin init 2、set command 3、function 实现功能,比如这里的流表 今天我们再用VPP实现一个流表的功能 一、流表 1.1流表----plugin init VLIB_REGISTER_NODE 注册流表节点 // 注册流…...

word已排序好的参考文献,插入新的参考文献,序号更新

原排序好的文献序号。 现在在3号后面插入一个新文献。4,5号应该成为5,6 这时在3号后面,回车,就会自动的增长。如下图: 但是如果手滑,把[4]删除了如何排序?? 如下图: …...

二叉树的顺序存储——堆——初识堆排序

前面我们学过可以把完全二叉树存入到顺序表中,然后利用完全二叉树的情缘关系,就可以通过数组下标来联系。 但是并不是把二叉树存入到数组中就是堆了,要看原原来的二叉树是否满足:所有的父都小于等于子,或者所有的父都…...

CYEZ 模拟赛 9

A a ⊥ b ⇒ a − b ⊥ a b (1) a \perp b \Rightarrow a-b \perp ab \tag {1} a⊥b⇒a−b⊥ab(1) 证明: gcd ⁡ ( a , b ) gcd ⁡ ( b , a − b ) \gcd(a,b) \gcd(b, a-b) gcd(a,b)gcd(b,a−b),故 a − b ⊥ b a - b \perp b a−b⊥b,同…...

typescript: Builder Pattern

/*** file: CarBuilderts.ts* TypeScript 实体类 Model* Builder Pattern* 生成器是一种创建型设计模式, 使你能够分步骤创建复杂对象。* https://stackoverflow.com/questions/12827266/get-and-set-in-typescript* https://github.com/Microsoft/TypeScript/wiki/…...

WPS/word 表格跨行如何续表、和表的名称

1:具体操作: 将光标定位在跨页部分的第一行任意位置,按下快捷键ctrlshiftenter,就可以在跨页的表格上方插入空行(在空行可以写,表1-3 xxxx(续)) 在空行中输入…...

Python的NumPy库(一)基础用法

NumPy库并不是Python的标准库,但其在机器学习、大数据等很多领域有非常广泛的应用,NumPy本身就有比较多的内容,全部的学习可能涉及许多的内容,但我们在这里仅学习常见的使用,这些内容对于我们日常使用NumPy是足够的。 …...

uniapp app 导出excel 表格

直接复制运行 <template><view><button click"tableToExcel">导出一个表来看</button><view>{{ successTip }}</view></view> </template><script>export default {data() {return {successTip: }},metho…...

【RabbitMQ】常用消息模型详解

文章目录 AMQP协议的回顾RabbitMQ支持的消息模型第一种模型(直连)开发生产者开发消费者生产者、消费者开发优化API参数细节 第二种模型(work quene)开发生产者开发消费者消息自动确认机制 第三种模型(fanout)开发生产者开发消费者 第四种模型(Routing)开发生产者开发消费者 第五…...

图像拼接后丢失数据,转tiff报错rasterfile failed: an unknown

图像拼接后丢失数据 不仅是数据丢失了&#xff0c;还有个未知原因报错 部分数据存在值不存在的情况 原因 处理遥感数据很容易&#xff0c;磁盘爆满了 解决方案 清理一些无用数据&#xff0c;准备买个2T的外接硬盘用着了。 然后重新做处理...

Nginx之日志模块解读

目录 基本介绍 配置指令 access_log&#xff08;访问日志&#xff09; error_log&#xff08; 错误日志&#xff09; 基本介绍 Nginx日志主要分为两种&#xff1a;access_log(访问日志)和error_log(错误日志)。Nginx日志主要记录以下信息&#xff1a; 记录Nginx服务启动…...

latex方程组编写,一种可以保证方程编号自适应的方法

问题描述&#xff1a; 在利用latex编写方程组时&#xff0c;可以有很多种方法&#xff0c;但不总是编辑好的公式能够显示出编号&#xff0c;故提出一种有效的方程组编写方法 方法&#xff1a; \begin{equation}X_{ t1}\left \{ \begin{matrix}\frac{x_{i}}{a} \quad\quad 0&l…...

深度学习基础 2D卷积(1)

什么是2D卷积 2D参数量怎么计算 以pytorch为例子&#xff0c;2D卷积在设置的时候具有以下参数&#xff0c;具有输入通道的多少&#xff08;这个决定了卷积核的通道数量&#xff09;&#xff0c;滤波器数量&#xff0c;这个是有多少个滤波器&#xff0c;越多提取的特征就越有用…...

OpenCV DNN C++ 使用 YOLO 模型推理

OpenCV DNN C 使用 YOLO 模型推理 引言 YOLO&#xff08;You Only Look Once&#xff09;是一种流行的目标检测算法&#xff0c;因其速度快和准确度高而被广泛应用。OpenCV 的 DNN&#xff08;Deep Neural Networks&#xff09;模块为我们提供了一个简单易用的 API&#xff0…...

第八章 Linux文件系统权限

目录 8.1 文件的一般权限 1.修改文件或目录的权限---chmod命令 2.对于文件和目录&#xff0c;r&#xff0c;w&#xff0c;x有不同的作用&#xff1a; 3.修改文件或目录的所属主和组---chown,chgrp 8.2 文件和目录的特殊权限 三种通过字符描述文件权限 8.3 ACL 权限 1.A…...

XXL-JOB源码梳理——一文理清XXL-JOB实现方案

分布式定时任务调度系统 流程分析 一个分布式定时任务&#xff0c;需要具备有以下几点功能&#xff1a; 核心功能&#xff1a;定时调度、任务管理、可观测日志高可用&#xff1a;集群、分片、失败处理高性能&#xff1a;分布式锁扩展功能&#xff1a;可视化运维、多语言、任…...

java做个qq机器人

前置的条件 机器人是基于mirai框架实现的。根据官方的文档&#xff0c;建议使用openjdk11。 我这里使用的编辑工具是idea2023 在idea中新建一个maven项目&#xff0c;虽然可以使用gradle进行构建&#xff0c;不过我这里由于网络问题没有跑通。 pom.xml <dependency>&l…...

前端 | AjaxAxios模块

文章目录 1. Ajax1.1 Ajax介绍1.2 Ajax作用1.3 同步异步1.4 原生Ajax 2. Axios2.1 Axios下载2.2 Axios基本使用2.3 Axios方法 1. Ajax 1.1 Ajax介绍 Ajax: 全称&#xff08;Asynchronous JavaScript And XML&#xff09;&#xff0c;异步的JavaScript和XML。 1.2 Ajax作用 …...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...