当前位置: 首页 > news >正文

《Secure Analytics-Federated Learning and Secure Aggregation》论文阅读

背景

机器学习模型对数据的分析具有很大的优势,很多敏感数据分布在用户各自的终端。若大规模收集用户的敏感数据具有泄露的风险。
对于安全分析的一般背景就是认为有n方有敏感数据,并且不愿意分享他们的数据,但可以分享聚合计算后的结果。
联邦学习是一种训练数据在多方训练,然后聚合结果得到最终的中心化模型。其中的关键就是多方结果的安全聚合。

风险模型

有很多用户,假设用户都是诚实但好奇的,即会遵守协议规则,但会通过拼凑数据获取敏感信息。换句话说就是恶意的,很可能执行不好的行为。

安全聚合
问题的定义、目标和假设

风险模型假设用户和中心服务器都是诚实且好奇的。如果用户是恶意的,他们有能力在不被监测的情况下影响聚合结果。
安全聚合协议:

  1. 操作高维向量;
  2. 不管计算中涉及到的用户子集,通信是高效的;
  3. 用户dropout是robust;
  4. 足够安全
第一次尝试:一次填充掩码

对于所有的用户,通过每个用户对 u , v u,v uv构建一个secret,具体逻辑:对所有用户进行排序,当用户 u < v u < v u<v构建一个 + s u , v +s_{u,v} +su,v,相反则构建一个 − s v , u -s_{v,u} sv,u,如下图:
请添加图片描述
当聚合的时候
∑ i = 1 3 = x 1 + s 1 , 2 + s 1 , 3 + x 2 − s 1 , 2 + s 2 , 3 + x 3 − s 1 , 3 − s 2 , 3 \sum_{i=1}^3=x_1+s_{1,2}+s_{1,3}+x_2-s_{1,2}+s_{2,3}+x_3-s_{1,3}-s_{2,3} i=13=x1+s1,2+s1,3+x2s1,2+s2,3+x3s1,3s2,3

缺点:

  1. 二次通信,每个用户对 u , v u, v u,v都需要产生他们的秘钥 s u , v s_{u,v} su,v
  2. 如果任何一个用户drop out,对于 ∑ ∀ i y i \sum_{\forall i}y_i iyi都会变成垃圾数据,从而本次不能聚合。
利用Diffie-Hellman秘钥交换改进二次通信

所有的用户商定一个大素数 p p p和一个基本数 g g g。用户将自己的公钥( g a u m o d p g^{a_{u}} \mod p gaumodp,其中 a u a_u au是用户的秘钥)发送给server,然后server广播一个公钥给其他的用户,其他用户使用自己的秘钥和该公钥进行计算,如:
u 1 : ( g a 2 ) a 1 m o d p = g a 1 a 2 m o d p = s 1 , 2 u_1:(g^{a_2})^{a_1}\quad mod \quad p = g^{a_1a_2}\quad mod \quad p=s_{1,2} u1(ga2)a1modp=ga1a2modp=s1,2
u 2 : ( g a 1 ) a 2 m o d p = g a 1 a 2 m o d p = s 1 , 2 u_2:(g^{a_1})^{a_2}\quad mod \quad p = g^{a_1a_2}\quad mod \quad p=s_{1,2} u2(ga1)a2modp=ga1a2modp=s1,2
Diffie-Hellman秘钥交换比上面的方法更简单、更高效。

第二次尝试:可恢复的一次性填充掩码

同上述方法类似,用户将他们加密后的向量 y u y_u yu发给server,然后server询问其他用户是否包含drop out的用户,是的话则取消他们的秘密绑定。如下图:请添加图片描述

该方法的缺点:

  1. 在recovery阶段发生额外的用户drop out,这将要求新drop out的用户也需要recovery,在大量用户的情况下,轮询次数将增加。
  2. 通信延迟导致server以为用户被drop out。因此,会想其他用户recovery秘钥,这导致server在接收到该用户的secret时,解密该用户的 x u x_u xu。如下图
    请添加图片描述
    因此,如果server是恶意的,则可以通过此方法获取用户的inputs

Shamir秘密分享
允许一个用户将秘密 s s s分享成 n n n个shares,然后任意 t t t个shares都能重构出秘密 s s s,而任意 t − 1 t-1 t1个shares都不能重构出秘密 s s s

第三次尝试:处理Dropped用户

为了克服在通信轮次之间,新dropped用户增加recovery阶段,用户Shamir秘密分享的阈值。每个用户发送他们DH秘钥的shares给其他用户,只要符合阈值条件,允许pairwise secrets被recovered,即使是recovery期间新dropped用户。协议可以总结如下:

  1. 每个用户 u u u将他的DH秘钥 a u a_u au分享成n-1个部分 a u 1 , a u 2 , . . , a u ( n − 1 ) a_{u1},a_{u2},..,a_{u(n-1)} au1,au2,..,au(n1),并发送给其他 n − 1 n-1 n1个用户。
  2. server接收来自在线用户的 y u y_u yu(记为: U o n l i n e , r o u n d 1 U_{online,round 1} Uonline,round1)。
  3. server计算dropped用户集,表示为 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1
  4. server向 U o n l i n e , r o u n d 1 U_{online,round 1} Uonline,round1询问 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1的shares。在第二轮通信中假设至少还有t个用户在线
  5. server对 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1的秘钥进行recover,并在最后聚合时,remove掉他们。

该方法依然没有解决恶意server因为通信延迟问题获取用户的数据问题。

最后一次尝试:双重掩码

双重掩码的目标就是为了防止用户数据的泄露,即使当server重构出用户的masks。首先,每个用户产生一个额外的随机秘钥 a u a_u au,并且分布他的shares给其他的用户。生成 y u y_u yu时,添加第二重mask:
y u = x u + a u + ∑ u < v s u , v − ∑ u > v s v , u m o d e R y_u = x_u+a_u+\sum_{u<v}s_{u,v}-\sum_{u>v}s_{v,u}\quad mode \quad R yu=xu+au+u<vsu,vu>vsv,umodeR
在recovery轮次中,对于每个用户,server必须作出精确的选择。从每个在线的成员 v v v中,请求 u u u s u , v s_{u,v} su,v或者 a u a_u au。对于同一个用户,一个诚实的 v v v通过这两种shares不能还原数据,server需要从所有dropped的用户中聚合至少t个 s u , v s_{u,v} su,v的shares或者所有在线用户中t个 a u a_u au的shares。之后,server便可以减去剩余的masks还原数据。
该方法整个过程中的计算和通信数量级还是 n 2 n_2 n2,n表示参与计算的用户数。一个新的问题:当 t < n 2 t<\frac{n}{2} t<2n时,server可以分别询问用户的 s u , v s_{u,v} su,v a u a_u au,来解密用户的数据

参考文献:
[1] K. Bonawitz. ”Practical Secure Aggregation for Privacy-Preserving Machine Learning”. 2017.
[2] J. Konecny. ”Federated Learning: Strategies for Improving Communication Efficiency”. 2017.
[3] H. B. McMahan. ”Communication-Efficient Learning of Deep Networks from Decentralized Data”. 2016.
[4] A. Shamir. ”How to Share a Secret”. 1979.

相关文章:

《Secure Analytics-Federated Learning and Secure Aggregation》论文阅读

背景 机器学习模型对数据的分析具有很大的优势&#xff0c;很多敏感数据分布在用户各自的终端。若大规模收集用户的敏感数据具有泄露的风险。 对于安全分析的一般背景就是认为有n方有敏感数据&#xff0c;并且不愿意分享他们的数据&#xff0c;但可以分享聚合计算后的结果。 联…...

十三、Django之添加用户(原始方法实现)

修改urls.py path("user/add/", views.user_add),添加user_add.html {% extends layout.html %} {% block content %}<div class"container"><div class"panel panel-default"><div class"panel-heading"><h3 c…...

Elasticsearch数据操作原理

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎&#xff0c;设计用于云计算环境中&#xff0c;能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性&#xff0c;可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…...

gitgitHub

在git中复制CtrlInsert、粘贴CtrlShif 一、用户名和邮箱的配置 查看用户名 &#xff1a;git config user.name 查看密码&#xff1a; git config user.password 查看邮箱&#xff1a;git config user.email 查看配置信息&#xff1a; $ git config --list 修改用户名 git co…...

十天学完基础数据结构-第九天(堆(Heap))

堆的基本概念 堆是一种特殊的树形数据结构&#xff0c;通常用于实现优先级队列。堆具有以下两个主要特点&#xff1a; 父节点的值始终大于或等于其子节点的值&#xff08;最大堆&#xff09;&#xff0c;或者父节点的值始终小于或等于其子节点的值&#xff08;最小堆&#xff…...

vertx的学习总结7之用kotlin 与vertx搞一个简单的http

这里我就简单的聊几句&#xff0c;如何用vertx web来搞一个web项目的 1、首先先引入几个依赖&#xff0c;这里我就用maven了&#xff0c;这个是kotlinvertx web <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apac…...

golang学习笔记(二):链路追踪

自定义http连接的服务端 package serverimport ("github.com/gin-gonic/gin""go.opentelemetry.io/contrib/instrumentation/github.com/gin-gonic/gin/otelgin""net/http" )type MyServer struct {Server *http.Server }func GetServer() *MyS…...

git提交代码实际操作

1.仓库的代码 2.克隆代码下存在的分支 git clobe https://gitee.com/sadsadasad/big-event-11.git 3.查看当下存在的分支 git branch -a 在很多情况下,我们是要围绕着dev分支进行开发,所以我们可以在开发之前问明白围绕那个分支进行开发。 4.直接拉去dev分支代码 5.如果没在…...

TF坐标变换

ROS小乌龟跟随 5.1 TF坐标变换 Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 tf模块&#xff1a;在 ROS 中用于实现不同坐标系之间的点或向量的转换。 在ROS中坐标变换最初对应的是tf&#xff0c;不过在 hydro 版本开始, tf 被弃用&#xff0c;迁移到 tf2,后者更…...

如何进行网络编程和套接字操作?

网络编程是计算机编程中重要的领域之一&#xff0c;它使程序能够在网络上进行数据传输和通信。C语言是一种强大的编程语言&#xff0c;也可以用于网络编程。网络编程通常涉及套接字&#xff08;Socket&#xff09;操作&#xff0c;套接字是一种用于网络通信的抽象接口。本文将详…...

在Spark中集成和使用Hudi

本文介绍了在Spark中集成和使用Hudi的功能。使用Spark数据源API(scala和python)和Spark SQL,插入、更新、删除和查询Hudi表的代码片段。 1.安装 Hudi适用于Spark-2.4.3+和Spark 3.x版本。 1.1 Spark 3支持矩阵 Hudi...

力扣第226翻转二叉数 c++三种方法 +注释

题目 226. 翻转二叉树 简单 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1]示例 2&#xff1a; 输入&#xff1a;root [2,1,3] 输出&am…...

React项目部署 - Nginx配置

写在前面&#xff1a;博主是一只经过实战开发历练后投身培训事业的“小山猪”&#xff0c;昵称取自动画片《狮子王》中的“彭彭”&#xff0c;总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域&#xff0c;如今终有小成…...

【Vue3】定义全局变量和全局函数

// main.ts import { createApp } from vue import App from ./App.vue const app createApp(App)// 解决 ts 报错 type Filter {format<T>(str: T): string } declare module vue {export interface ComponentCustomProperties {$filters: Filter,$myArgs: string} }a…...

【Pandas】Apply自定义行数

文章目录 1. Series的apply方法2. DataFrame的apply方法2.1 针对列使用apply2.2 针对行使用apply Pandas提供了很多数据处理的API,但当提供的API不能满足需求的时候,需要自己编写数据处理函数, 这个时候可以使用apply函数apply函数可以接收一个自定义函数, 可以将DataFrame的行…...

C#,数值计算——完全VEGAS编码的蒙特·卡洛计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Complete VEGAS Code /// adaptive/recursive Monte Carlo /// </summary> public abstract class VEGAS { const int NDMX 50; const int …...

纯css实现3D鼠标跟随倾斜

老规矩先上图 为什么今天会想起来整这个呢?这是因为和我朋友吵架, 就是关于这个效果的,就是这个 卡片懸停毛玻璃效果, 我朋友认为纯css也能写, 我则坦言他就是在放狗屁,这种跟随鼠标的3D效果要怎么可能能用纯css写, 然后吵着吵着发现,欸,好像真能用css写哦,我以前还写过这种…...

Pandas数据结构

文章目录 1. Series数据结构1.1 Series数据类型创建1.2 Series的常用属性valuesindex/keys()shapeTloc/iloc 1.3 Series的常用方法mean()max()/min()var()/std()value_counts()describe() 1.4 Series运算加/减法乘法 2. DataFrame数据结构2.1 DataFrame数据类型创建2.2 布尔索引…...

systemverilog function的一点小case

关于function的应用无论是在systemverilog还是verilog中都有很广泛的应用&#xff0c;但是一直有一个模糊的概念困扰着我&#xff0c;今天刚好有时间来搞清楚并记录下来。 关于fucntion的返回值的问题&#xff1a; function integer clog2( input logic[255:0] value);for(cl…...

微服务的初步使用

环境说明 jdk1.8 maven3.6.3 mysql8 idea2022 spring cloud2022.0.8 微服务案例的搭建 新建父工程 打开IDEA&#xff0c;File->New ->Project&#xff0c;填写Name&#xff08;工程名称&#xff09;和Location&#xff08;工程存储位置&#xff09;&#xff0c;选…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...