当前位置: 首页 > news >正文

基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码

基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.帝国主义竞争优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 帝国主义竞争算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用帝国主义竞争算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.帝国主义竞争优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 帝国主义竞争算法应用

帝国主义竞争算法原理请参考:https://blog.csdn.net/u011835903/article/details/108517210

帝国主义竞争算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从帝国主义竞争算法的收敛曲线可以看到,整体误差是不断下降的,说明帝国主义竞争算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码

基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码 文章目录 基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.帝国主义竞争优化BP神经网络3.1 BP神经网络参数设置3.2 帝国主义竞争算…...

将python项目部署在一台服务器上

将python项目部署在一台服务器上 1.服务器2.部署方法2.1 手动部署2.2 容器化技术部署2.3 服务器less技术部署 1.服务器 服务器一般为:物理服务器和云服务器。 我的是物理服务器:这是将服务器硬件直接放置在您自己的数据中心或机房的传统方法。这种方法需…...

【C语言】善于利用指针(二)

💗个人主页💗 ⭐个人专栏——C语言初步学习⭐ 💫点击关注🤩一起学习C语言💯💫 ​ 目录 导读:1. 字符指针1.1 字符串的引用方式1.2 有趣的面试题 2. 数组指针2.1 一维数组指针的定义2.2 一维数组…...

Python调用C++

https://www.cnblogs.com/renfanzi/p/10276997.html Linux使用Python调用C/C接口(一) - 代码先锋网 linux系统上使用Python调用C生成的.so动态链接库opencv_linux 下python 编译为so ,给c使用_比赛学习者的博客-CSDN博客 https://www.cnblogs.com/shuimuqingyang/p/13618105…...

自己实现扫描全盘文件的函数。

1.自己实现扫描全盘的函数 def scan_disk(dir): global count,dir_count if os.path.isdir(dir): files os.listdir(dir) for file in files: print(file) dir_count 1 if os.path.isdir(dir os.sep file): …...

JSON文件读写

1、依赖文件 #include <QFile> #include <QJsonDocument> #include <QJsonObject> #include <QDebug> #include <QStringList>2、头文件 bool ReadJsonFile(const QString& filePath""); bool WriteJsonFile(const QString&…...

VisualStudio2022环境下Release模式编译dll无法使用TLS函数问题

Debug x86环境下正常使用TLS回调函数 切换到Release发现程序没有使用tls 到C/C > 优化中将全程序优化关闭即可...

ChatGPT基础使用总结

文章目录 一、ChatGPT基础概念大型语言模型LLMs---一种能够以类似人类语言的方式“说话”的软件ChatGPT定义---OpenAI 研发的一款聊天机器人程序&#xff08;2022年GPT-3.5&#xff0c;属于大型语言模型&#xff09;ChatGPT4.0---OpenAI推出了GPT系列的最新模型ChatGPT典型使用…...

解决报错: require is not defined in ES module scope

用node启动mjs文件报错&#xff1a;require is not defined in ES module scope 现象如下&#xff1a; 原因&#xff1a; 文件后缀是mjs, 被识别为es模块&#xff0c;但是node默认是commonjs格式&#xff0c;不支持也不能识别es模块。 解决办法&#xff1a;把文件后缀从.mjs改…...

STM32 10个工程篇:1.IAP远程升级(六)

在IAP远程升级的最后一篇博客里&#xff0c;笔者想概括性地梳理总结IAP程序设计中值得注意的问题&#xff0c;诚然市面上或者工作后存在不同版本的IAP下位机和上位机软件&#xff0c;也存在不同定义的报文格式&#xff0c;甚至对于相似的知识点不同教程又有着完全不同的解读&am…...

【智能家居项目】裸机版本——字体子系统 | 显示子系统

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《智能家居项目》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 今天实现上图整个项目系统中的字体子系统和显示子系统。 目录 &#x1f004;设计思路&#x1…...

PDF中跳转到参考文献后,如何回到原文

在PDF中&#xff0c;点击了参考文献的超链接可以直接跳至参考文献的位置。 如果想从当前参考文献在回到正文中对应位置时&#xff0c;可以通过 Alt \red{\text{Alt}} Alt ← \red{\leftarrow} ← 实现。...

了解基于Elasticsearch 的站内搜索,及其替代方案

对于一家公司而言&#xff0c;数据量越来越多&#xff0c;如果快速去查找这些信息是一个很难的问题&#xff0c;在计算机领域有一个专门的领域IR&#xff08;Information Retrival&#xff09;研究如何获取信息&#xff0c;做信息检索。在国内的如百度这样的搜索引擎也属于这个…...

【多模态融合】TransFusion学习笔记(2)

接上篇【多模态融合】TransFusion学习笔记(1)。 从TransFusion-L到TransFusion ok,终于可以给出论文中那个完整的框架图了&#xff0c;我第一眼看到这个图有几个疑问: Q&#xff1a;Image Guidance这条虚线引出的Query Initialization是什么意思? Q&#xff1a;图像分支中的…...

Pyhon-每日一练(1)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

MySQL:数据库的物理备份和恢复-冷备份(3)

介绍 物理备份&#xff1a; 直接复制数据文件进行的备份 优点&#xff1a;不需要其他的工具&#xff0c;直接复制就好&#xff0c;恢复直接复制备份文件即可 缺点&#xff1a;与存储引擎有关&#xff0c;跨平台能力较弱 逻辑备份&#xff1a; 从数据库中导出数据另存而进行的备…...

功能比较:Redisson vs Jedis

Redis最流行的两个Java客户端库是Redisson和Jedis。Redisson提供内存中的数据网格功能&#xff0c;支持Redis的各种分布式对象和服务。另一方面&#xff0c;Jedis是一个更轻量级的产品&#xff0c;它缺乏其他库的某些功能。 如果你正在为Redis寻找一个Java客户端库&#xf…...

Spring web security

儅使用spring的web security時&#xff0c;默認會轉向自帶的spring security example page。而不會轉向error page。 TODO: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId> &l…...

SpringCloud(二)Docker、Spring AMQP、ElasticSearch

文章目录 DockerDocker与虚拟机Docker架构镜像、容器、镜像托管平台Docker架构Docker实践 Spring AMQP简单使用案例工作队列- WorkQueue发布订阅服务FanoutExchangeDirectExchangeTopicExchange 消息转换器 ElasticSearch倒排索引IK分词器IK分词拓展与停用字典 操作索引库mappi…...

7.Tensors For Beginneers - Convector Components

介绍协向量时&#xff0c;曾说过它们有点像 行向量&#xff0c; 行向量确实以某种方式代表了协向量&#xff0c; 这里说明一下&#xff1a; 协向量是不变的&#xff1b; 协向量组件是可变的。 协向量不依赖坐标系&#xff0c;协向量的组件取决于坐标系。 当我们说协向量具有组…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...