当前位置: 首页 > news >正文

day51【代码随想录】动态规划之回文子串、最长回文子序列

文章目录

  • 前言
  • 一、回文子串(力扣647)
  • 二、最长回文子序列(力扣516)


前言

1、回文子串
2、最长回文子序列


一、回文子串(力扣647)

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串
在这里插入图片描述
分析:
1、确定dp[]数组以及下标含义
在这里插入图片描述

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

2、递推公式
分析两种情况:
s[i]与s[j]相等,s[i]与s[j]不相等两种
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时:

情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
情况二:i和j仅相差1,“aa” 这样子
情况三:i-j>1 “abccba” 或者 “abca”,此时我们需要判断i-1 和 j+1是不是回文子串,

3、初始化
都初始为false
4、遍历顺序
从下到上

class Solution {public int countSubstrings(String s) {int res = 0;char[] ss = s.toCharArray();if (s == null || (s.length() < 1)) return 0;boolean[][] dp = new boolean[ss.length][ss.length];for(int i=s.length()-1;i>=0;i--){for(int j=i;j<s.length();j++){if(ss[i]==ss[j]){if(Math.abs(i-j)<=1){dp[i][j] = true;res++;}else if(dp[i+1][j-1]==true){dp[i][j] = true;res++;}}else{dp[i][j] = false;}}}return res;}
}

在这里插入图片描述

二、最长回文子序列(力扣516)

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

在这里插入图片描述
分析:

回文子串是要连续的,回文子序列可不是连续的!
思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。
1、确定dp数组以及下标含义
dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串,回文子串的长度最大为dp[i][j]

2、递推公式
分析两种情况:
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

当s[i]与s[j]相等时
dp[i][j] = dp[i+1][j-1] +2;

3、初始化
在对角线上的情况dp[i][j]应该是初始为1的。即:一个字符的回文子序列长度就是1。
其他情况dp[i][j]初始为0就行
4、遍历顺序
从下到上

class Solution {public int longestPalindromeSubseq(String s) {int[][] dp = new int[s.length()][s.length()];if(s==null || s.length()==0) return 0;//初始化for(int i=0;i<s.length();i++){dp[i][i] = 1;}//遍历顺序for(int i=s.length()-2;i>=0;i--){for(int j=i+1;j<s.length();j++){if(s.charAt(i)==s.charAt(j)){dp[i][j] = dp[i+1][j-1]+2;}else{dp[i][j] = Math.max(dp[i][j-1],dp[i+1][j]);}}}return dp[0][s.length()-1];}
}

在这里插入图片描述


相关文章:

day51【代码随想录】动态规划之回文子串、最长回文子序列

文章目录前言一、回文子串&#xff08;力扣647&#xff09;二、最长回文子序列&#xff08;力扣516&#xff09;前言 1、回文子串 2、最长回文子序列 一、回文子串&#xff08;力扣647&#xff09; 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目…...

拟凸函数,拟凹函数,单峰函数

拟凸&#xff08;quasi-convex&#xff09;函数很早就听说过&#xff0c;但是标准定义一直不太了解&#xff0c;现在总结一下。 一个定义在凸集上的实数函数 fff 是拟凸函数&#xff1a;若对于其定义域内的任意两个点 xxx 和 yyy&#xff0c;以及任意常数 λ∈[0,1]\lambda\in…...

数据处理(伪)代码:卡尔曼滤波 vs. 卡尔曼平滑

步骤一、导入csv或txt格式的试验数据 最简洁也是据说读取速度最快的方法是&#xff1a; pPath C:\data_org\9#-1.txt % 数据文件 data importdata(pPath); % 读取 pPath 的结果到 一个数据结构变量 data 中。 pData data.data; % 提取有效数据数组data 的数据结构如下&a…...

华为OD机试题,用 Java 解【比赛评分】问题

最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...

【基础算法】哈希表(开放寻址法)

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

优化算法(寻优问题)

前言 群智能算法&#xff08;全局最优&#xff09;&#xff1a;模拟退火算法&#xff08;Simulated annealing&#xff0c;SA&#xff09;&#xff0c;遗传算法&#xff08;Genetic Algorithm, GA&#xff09;&#xff0c;粒子群算法&#xff08;Particle Swarm Optimization&…...

基于视频流⽔线的Opencv缺陷检测项⽬

代码链接见文末 1.数据与任务概述 输入为视频数据,我们需要从视频中检测出缺陷,并对缺陷进行分类。 2.整体流程 (1)视频数据读取和轮廓检测 首先,我们需要使用opencv读取视频数据,将彩色图转为灰度图后进行图像阈值处理。阈值处理是为了让前景和背景更明显的区分处理。…...

百万数据excel导出功能如何实现?

最近我做过一个MySQL百万级别数据的excel导出功能&#xff0c;已经正常上线使用了。 这个功能挺有意思的&#xff0c;里面需要注意的细节还真不少&#xff0c;现在拿出来跟大家分享一下&#xff0c;希望对你会有所帮助。 原始需求&#xff1a;用户在UI界面上点击全部导出按钮…...

华为OD机试题,用 Java 解【合规数组】问题

最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...

SAP ABAP中的数据类型 Data Types

简单来说分两种&#xff1a; 数据字典里定义的在ABAP程序里定义的 文章目录1. ABAP数据字典里的1.1 数字型的1.2 字符型1.3 字节型1.4 特殊类型2. 预定义的ABAP数据类型2.1 预定义数字型2.2 预定义字符型2.3 预定义字节型1. ABAP数据字典里的 1.1 数字型的 用在数学计算里的…...

HashMap~

HashMap&#xff1a; HashMap是面试中经常被问到的一个内容&#xff0c;以下两个经常被问到的问题&#xff0c; Question1&#xff1a;底层数据结构&#xff0c;1.7和1.8有何不同&#xff1f; 答&#xff1a;1.7数组&#xff0b;链表&#xff0c;1.8数组&#xff0b;(链表|红…...

EasyNLP集成K-Global Pointer算法,支持中文信息抽取

作者&#xff1a;周纪咏、汪诚愚、严俊冰、黄俊 导读 信息抽取的三大任务是命名实体识别、关系抽取、事件抽取。命名实体识别是指识别文本中具有特定意义的实体&#xff0c;包括人名、地名、机构名、专有名词等&#xff1b;关系抽取是指识别文本中实体之间的关系&#xff1b;…...

mysql lesson3

DQL查找语句续集.............................. 分组函数&#xff08;也叫多行处理函数&#xff09; 1&#xff1a; select sum(sal) from emp;select min(sal)from emp;select max(sal)from emp;select avg(sal)from emp;select count(ename)from emp;2&#xff1a;分组函…...

python源码保护

文章目录代码混淆打包exe编译为字节码源码加密项目发布部署时&#xff0c;为防止python源码泄漏&#xff0c;可以通过几种方式进行处理代码混淆 修改函数、变量名 打包exe 通过pyinstaller 将项目打包为exe可执行程序&#xff0c;不过容易被反编译。 编译为字节码 py_comp…...

第51讲:SQL优化之COUNT查询的优化

文章目录 1.COUNT查询优化的概念2.COUNT函数的用法1.COUNT查询优化的概念 在很多的业务场景下可能需要统计一张表中的总数据量,当表的数据量很大时,使用COUNT统计表数据量时,也是非常耗时的。 MyISAM引擎会把一个表的总行记录在磁盘中,当执行count(*)的时候会直接从磁盘中…...

ArrayBlockingQueue

同步队列超出长度时&#xff0c;不同的返回形式可以分为以下四种。 会抛异常不会抛异常&#xff0c;有返回值死等&#xff0c;直到可以插入值或者取到值设置等待超时时间添加方法add()offfer()put()offer(E e,long timeout, TimeUnit unit)删除方法remove()poll()take()poll(l…...

DeepLabV3+:对预测处理的详解

相信大家对于这一部分才是最感兴趣的&#xff0c;能够实实在在的看到效果。这里我们就只需要两个.py文件&#xff08;deeplab.py、predict_img.py&#xff09;。 创建DeeplabV3类 deeplab.py的作用是为了创建一个DeeplabV3类&#xff0c;提供一个检测图片的方法&#xff0c;而…...

【Git】与“三年经验”就差个分支操作的距离

前言 Java之父于胜军说过&#xff0c;曾经一位“三年开发经验”的程序员粉丝朋友&#xff0c;刚入职因为不会解决分支问题而被开除&#xff0c;这是不是在警示我们什么呢&#xff1f; 针对一些Git的不常用操作&#xff0c;我们通过例子来演示一遍 1.版本回退 1.1已提交但未p…...

【经验】win10设置自启动

方法一&#xff1a;自启动文件夹 按下winr快捷键&#xff0c;弹出运行窗口&#xff0c;输入&#xff1a;shell:startup&#xff0c;弹出自启动文件夹窗口&#xff0c;将要开机自启的程序或快捷方式复制到此窗口中即可。 自启动文件夹路径&#xff1a;C:\Users\【用户名】\Ap…...

Linux SPI-NAND 驱动开发指南

文章目录Linux SPI-NAND 驱动开发指南1 概述1.1 编写目的1.2 适用范围1.3 相关人员3 流程设计3.1 体系结构3.2 源码结构3.3 关键数据定义3.3.1 flash 设备信息数据结构3.3.2 flash chip 数据结构3.3.3 aw_spinand_chip_request3.3.4 ubi_ec_hdr3.3.5 ubi_vid_hdr3.4 关键接口说…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...