当前位置: 首页 > news >正文

时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测

时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测

目录

    • 时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本介绍

EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测
1.时间序列单列输入,如需多特征输入需额外付费。经过EMD分解后利用优化后的GRU对每个分量进行预测最后集成相加,算法新颖~EMD也可以换成其他分解方法,GRU也可以换成BiLSTM等其他预测模型。
2.iCHOA改进的黑猩猩优化算法改进点如下:
[1]利用Sobol序列初始化种群,增加种群的随机性和多样性,为算法全局寻优奠定基础;
[2]其次,引入基于凸透镜成像的反向学习策略,将其应用到当前最优个体上产生新的个体,提高算法的收敛精度和速度;
[3]最后,将水波动态自适应因子添加到攻击者位置更新处,增强算法跳出局部最优的能力。
3.直接替换Excel数据即可用,注释清晰,适合新手小白
4.附赠测试数据,输入格式如图3所示,可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测
%%  参数设置
%% 训练模型
%% 模型预测%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% T   - Output Matrix of Training Set (S*Q)
% N   - Number of Hidden Neurons (default = Q)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE  == 1T  = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

相关文章:

时序预测 | MATLAB实现EMD-iCHOA+GRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测

时序预测 | MATLAB实现EMD-iCHOAGRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测 目录 时序预测 | MATLAB实现EMD-iCHOAGRU基于经验模态分解-改进黑猩猩算法优化门控循环单元的时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 EMD-iCHOAGR…...

FFmpeg 命令:从入门到精通 | FFmpeg 解码流程

FFmpeg 命令&#xff1a;从入门到精通 | FFmpeg 解码流程 FFmpeg 命令&#xff1a;从入门到精通 | FFmpeg 解码流程流程图FFmpeg 解码的函数FFmpeg 解码的数据结构补充小知识 FFmpeg 命令&#xff1a;从入门到精通 | FFmpeg 解码流程 本内容参考雷霄骅博士的 FFmpeg 教程。 流…...

连接虚拟机工具推荐

连接虚拟机工具推荐 连接虚拟机的工具有很多种&#xff0c;以下是一些常用的推荐&#xff1a; PuTTY&#xff1a;这是一个非常常用的SSH和telnet客户端&#xff0c;适用于Windows系统。它允许你在本地机器上通过命令行接口远程登录到虚拟机。 SecureCRT&#xff1a;这是一个支…...

万字详解HTTP协议面试必备技能

目录 一、HTTP 是什么 二、理解 "应用层协议" 2.1理解 HTTP 协议的工作过程 2.2HTTP 协议格式 2.3抓包工具的使用 2.4抓包工具的原理 2.5抓包结果 2.5.1HTTP请求 2.5.2HTTP响应 2.6协议格式总结 三、HTTP 请求 (Request) 3.1认识 URL 3.1.1URL 基本格式 …...

Debian跳过grub页面

nano /etc/default/grub将GRUB_TIMEOUT的值改为0 将GRUB_CMDLINE_LINUX_DEFAULT的值改为"quiet splash" 如果要禁用开局日志的话&#xff0c;将GRUB_CMDLINE_LINUX_DEFAULT的值改为"quiet splash loglevel0" update-grub...

【已解决】RuntimeError Java gateway process exited before sending its port number

RuntimeError: Java gateway process exited before sending its port number 问题 思路 &#x1f3af;方法一 在代码前加入如下代码&#xff08;如图&#xff09;&#xff1a; import os os.environ[‘JAVA_HOME’] “/usr/local/jdk1.8.0_221” # 记得把地址改成自己的 …...

数据结构与算法-循环链表、双向链表

我们这里接着上一篇单链表继续往下深入学习循环链表、双向链表。 链表 &#x1f388;3.循环链表&#x1f52d;3.1循环链表的概念&#x1f52d;3.2循环链表的基本操作&#x1f50e;3.2.1创建空表&#x1f50e;3.2.2插入操作&#x1f50e;3.2.3删除操作 &#x1f388;4.双向链表&…...

javascript中依次输出元素并不断循环实现echarts柱图动画效果

循环来遍历数组并输出其中的元素 在JavaScript中&#xff0c;你可以使用循环来遍历数组并输出其中的元素。如果你想要依次输出6个元素并不断循环&#xff0c;可以使用如下的代码&#xff1a; let arr [/* 你的数组 */];for (let i 0; i < arr.length; i) {console.log(a…...

互联网Java工程师面试题·Memcached篇·第一弹

目录 1、Memcached 是什么&#xff0c;有什么作用&#xff1f; 1.1 memcached 服务在企业集群架构中有哪些应用场景&#xff1f; 1.1.1 作为数据库的前端缓存应用 1.1.2 作业集群的 session 会话共享存储 2、Memcached 服务分布式集群如何实现&#xff1f; 3、Memcach…...

git 详解-提升篇

git 冷门使用 承接上一篇 《git 进阶篇》&#xff0c;简单讲解 git 冷门使用方法。 码农常规使用工具 git 偶尔也有非常规操作。例如&#xff1a;提交代码时同事已经更新&#xff0c;但又不想回退本地补丁&#xff1b;或者已经提交补丁需要变更提交日志信息。 作者&#xff1…...

RPA的安全风险及应对策略

RPA已经深度革新了工作流程&#xff0c;大大提升效率并减少了人为错误&#xff0c;使企业运营更加高效。据预测&#xff0c;至2030年&#xff0c;全球RPA市场将以39.9%的复合年增长率持续发展&#xff0c;这显示了RPA对企业生产力的巨大推动力。 RPA能够承担人类的繁琐工作&am…...

数据结构与算法--贪心算法

数据结构与算法-贪心算法 1 贪心算法的概念 2 贪心算法的套路 3 贪心算法常用技巧 4 会议问题 5 字典序问题 1 贪心算法的概念 在某一标准下,优先考虑最满足标准的样本,最后考虑不满足标准的样本,最终得到一个答案的算法,叫做贪心算法 也就是说 不是从整体上加以考虑,所…...

【Unity3D】UGUI物体世界坐标转屏幕坐标问题

如题&#xff1a; UGUI物体世界坐标转屏幕坐标问题&#xff0c;获取UI(UGUI)屏幕坐标问题等相关问题 思路&#xff1a;必须使用Canvas身上的Camera&#xff0c;进行Camera.WorldToScreenPoint(UI物体的世界坐标Vector3)&#xff0c;会返回一个Vector3(x,y,z)&#xff0c;我们要…...

代码随想录二刷day51

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣309. 买卖股票的最佳时机含冷冻期二、力扣714. 买卖股票的最佳时机含手续费 前言 一、力扣309. 买卖股票的最佳时机含冷冻期 class Solution {public …...

接口自动化测试框架(pytest+allure+aiohttp+ 用例自动生成)

近期准备优先做接口测试的覆盖&#xff0c;为此需要开发一个测试框架&#xff0c;经过思考&#xff0c;这次依然想做点儿不一样的东西。 接口测试是比较讲究效率的&#xff0c;测试人员会希望很快能得到结果反馈&#xff0c;然而接口的数量一般都很多&#xff0c;而且会越来越…...

[Python入门教程]01 Python开发环境搭建

Python开发环境搭建 本文介绍python开发环境的安装&#xff0c;使用anaconda做环境管理&#xff0c;VS code写代码。搭建开发环境是学习的第一步&#xff0c;本文将详细介绍anaconda和vs code的安装过程&#xff0c;并测试安装结果。 视频教程链接&#xff1a;https://www.bil…...

第四章:最新版零基础学习 PYTHON 教程(第二节 - Python 数据类型—Python 字符串、列表、元组、迭代)

在在上一节文章中,我们了解了 Python 的基础知识。现在,我们继续了解更多 Python 概念。 Python 中的字符串: 字符串是字符序列,可以是字母、数字和特殊字符的组合。在Python中可以使用单引号、双引号甚至三引号来声明它。这些引号不是字符串的一部分,它们仅定义字符串…...

react框架与vue框架的区别

React和Vue都是前端开发中常用的框架&#xff0c;它们有一些不同的特性和优点。下面是它们的主要区别&#xff1a; 数据流和数据绑定&#xff1a;React是一种单向数据流的框架&#xff0c;而Vue则是双向数据绑定的框架。这意味着在React中&#xff0c;数据从组件的state属性流…...

C++_pen_静态与常量

成员 常成员、常对象&#xff08;C推荐使用 const 而不用#define,mutable&#xff09; const 数据成员只在某个对象生存周期内是常量&#xff0c;而对于整个类而言却是可变的&#xff08;static除外&#xff09; 1.常数据成员&#xff08;构造函数初始化表赋值&#xff09; c…...

ToDoList使用自定义事件传值

MyTop与MyFooter与App之间传递数据涉及到的就是子给父传递数据&#xff0c;MyList和MyItem与App涉及到爷孙传递数据。 之前的MyTop是使用props接收App传值&#xff0c;然后再在methods里面调用&#xff0c;现在使用自定义事件来处理子组件和父组件之间传递数据。 图是之前的…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...