当前位置: 首页 > news >正文

机器学习笔记(一)

在这里插入图片描述
1.线性回归模型
2. 损失函数
3.梯度下降算法

多元特征的线性回归

当有多个影响因素的时候,公式可以改写为:
在这里插入图片描述
在这里插入图片描述
当有多个影响因素的时候为了方便计算,可以使用 Numpy下面的点积方法, np.dot(w,x) 最后再加个b

就省略了很多书写步骤,这叫做矢量化

多元回归的梯度下降

在这里插入图片描述
左边是一元的,只需要更新一个w,
右边是多元的,需要对多个w进行梯度下降

特征缩放

假设特征1的范围为 5~2000
特征2的范围为0~5

有三种方法可以实现特征缩放

1.除以最大值法:

5~2000 除以2000 变成 0.0025~1
0~5 除以 5 变成 0~1

2.归一化

在这里插入图片描述

3.z-score
在这里插入图片描述

数据太大,或太小,需要进行特征缩放,来加快梯度下降的效率

逻辑回归

该模型常用于分类问题, 比如分辨 良性肿瘤和 恶性肿瘤

在这里插入图片描述
上图为 sigmoid函数
数学公式如下
在这里插入图片描述
公式推导如下
在这里插入图片描述
既然分类那么需要决策边界
在这里插入图片描述
当Z>0时 即 y>0.5 时 类型为 1 ;Z = wx + b 即 wx + b > 0

当Z<0时 即 y<0.5 时 类型为 0; wx + b < 0

逻辑回归的损失函数
在这里插入图片描述

如图所示,当y=1时,损失很低符合要求
在这里插入图片描述
如图所示当y = 0 时 损失函数如下,发生了图像变换, 先关于y轴对称,然后向右平移一个单位

在这里插入图片描述

等价于
在这里插入图片描述

在这里插入图片描述

J, 这里的y只能去0或1 ,因为这是一个分类问

逻辑回归的梯度下降

在这里插入图片描述
发现跟线性回归的梯度下降一样

但是两者的区别是f(x)不同
在这里插入图片描述

相关文章:

机器学习笔记(一)

1.线性回归模型 2. 损失函数 3.梯度下降算法 多元特征的线性回归 当有多个影响因素的时候,公式可以改写为: 当有多个影响因素的时候为了方便计算,可以使用 Numpy下面的点积方法, np.dot(w,x) 最后再加个b 就省略了很多书写步骤,这叫做矢量化 多元回归的梯度下降 左边是一…...

学习在原地打转的原因与解决 如何步步为营 一日千里快速进步 考研工程计算 1万小时=416.666666667 天

学习在原地打转的原因可能有很多。以下是一些常见的原因&#xff1a; 缺乏明确的目标&#xff1a;如果没有明确的学习目标&#xff0c;人们往往会感到迷失和困惑。没有一个明确的方向&#xff0c;就很难做出有针对性的努力&#xff0c;从而导致学习进展缓慢。 学习方法不当&a…...

194、SpringBoot --- 下载和安装 Erlang 、 RabbitMQ

本节要点&#xff1a; 一些命令&#xff1a; 小黑窗输入&#xff1a; rabbitmq-plugins enable rabbitmq_management 启动控制台插件 rabbitmq-server 启动rabbitMQ服务器 管理员启动小黑窗&#xff1a; rabbitmq-service install 添加rabbitMQ为本地服务 启动浏览器访问 htt…...

机器学习7:pytorch的逻辑回归

一、说明 逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类&#xff0c;其中概率用于确定二元结果&#xff0c;因此“二项式”中的“bi”。结果为真或假 — 0 或 1。 二项式逻辑回归的一个例子是预测人…...

Java应用程序中如何实现FTP功能 | 代码示例和教程

原为地址&#xff1a;https://www.toymoban.com/diary/java/363.html 在Java应用程序中实现FTP功能需要使用FTPClient类和相关方法。下面是实现三个主要功能的示例代码&#xff1a; 1&#xff09;显示FTP服务器上的文件&#xff1a; void ftpList_actionPerformed(ActionEv…...

kotlin:list的for循环

代码&#xff1a; var list { "a", "b", "c" } for (i in list.indices) {print("app"i""list[i]) }...

asp.net电影院选座系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net电影院选座系统 是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言开发 asp.net电影院选座系统1 二、功能介…...

CSS鼠标指针表

(机翻)搬运自:cursor - CSS: Cascading Style Sheets | MDN (mozilla.org) 类型Keyword演示注释全局autoUA将基于当前上下文来确定要显示的光标。例如&#xff0c;相当于悬停文本时的文本。default 依赖于平台的默认光标。通常是箭头。none不会渲染光标。链接&状态contex…...

树的基本概念及二叉树

目录 一、树的基本概念 &#xff08;1&#xff09;树的结点 &#xff08;2&#xff09;度 &#xff08;3&#xff09;结点层次 &#xff08;4&#xff09;树的高度 树的特点&#xff1a; 二、二叉树 &#xff08;1&#xff09;满二叉树 &#xff08;2&#xff09;完…...

BUUCTF Basic 解题记录--BUU XXE COURSE

1、XXE漏洞 初步学习&#xff0c;可参考链接&#xff1a; 一篇文章带你深入理解漏洞之 XXE 漏洞 - 先知社区 2、了解了XXE漏洞&#xff0c;用burpsuite获取到的url转发给repeater&#xff0c;修改XML的信息&#xff0c;引入外部实体漏洞&#xff0c;修改发送内容&#xff0c;…...

kotlin:LogKit

看到别人的一个代码&#xff0c;觉得有点意思&#xff0c;就复制过来。 package robatimport android.util.Log import java.util.*object LogKit {private val MIN_STACK_OFFSET 3var defaultTag "LogKit"private val lineSeparator System.getProperty("l…...

yolo_tracking中osnet不支持.pth格式,而model_zoo中仅有.pth

yolo_traking-7.0中REID模块用到了osnet&#xff0c;track.py中模型文件不支持.pth&#xff0c;而model_zoo中仅有.pth&#xff0c;改动代码太麻烦了&#xff0c;网上查到的.pth文件转化为.pt文件都需要读取网络架构&#xff0c;不太可能实现。 读取osnet_x0_25_msmt17.pth发现…...

Tailwind CSS浅析与实操

Tailwind CSS 一、Tailwind CSS简介 What is Tailwind CSS Tailwind CSS| TailwindCSS中文文档 | TailwindCSS中文网官方解释&#xff1a;只需书写 HTML 代码&#xff0c;无需书写 CSS&#xff0c;即可快速构建美观的网站。本质上是一个工具集&#xff0c;包含了大量类似 fle…...

Activiti工作流引擎详解与应用

一、简介 Activiti是一个开源的工作流引擎&#xff0c;基于BPMN2.0标准进行流程定义。它可以将业务系统中复杂的业务流程抽取出来&#xff0c;使用专门的建模语言BPMN2.0进行定义&#xff0c;业务流程按照预先定义的流程进行执行&#xff0c;实现了系统的流程由Activiti进行管…...

New Journal of Physics:不同机器学习力场特征的准确性测试

文章信息 作者&#xff1a;Ting Han1, Jie Li1, Liping Liu2, Fengyu Li1, * and Lin-Wang Wang2, * 通信单位&#xff1a;内蒙古大学物理科学与技术学院、中国科学院半导体研究所 DOI&#xff1a;10.1088/1367-2630/acf2bb 研究背景 近年来&#xff0c;基于DFT数据的机器学…...

ubuntu22.04 x11窗口环境手势控制

ubuntu22.04 x11窗口环境手势控制 ubuntu x11窗口环境的手势控制并不优秀&#xff0c;我们可以使用touchegg去代替 这个配置过程非常简单&#xff0c;并且可以很容易在一定范围内达到你想到的效果&#xff0c;类比mac的手势控制 关于安装 首先添加源&#xff0c;并安装 sud…...

【ARM CoreLink 系列 4 -- NIC-400 控制器详细介绍】

文章目录 1.1 ARM NIC-400(Network interconnect)1.1.1 NIC-400 系统框图1.1.2 NIC-400 Network Interconnect1.2 NIC-400 特点1.2.1 QoS-400 Advanced Quality of Service1.2.2 QVN-400 QoS Virtual Networks1.2.3 TLX-400 Thin Links1.3 NIC-400 Top1.4 NIC-400 Terminology1…...

【生成模型】解决生成模型面对长尾类型物体时的问题 RE-IMAGEN: RETRIEVAL-AUGMENTED TEXT-TO-IMAGE GENERATOR

介绍 尽管最先进的模型可以生成常见实体的高质量图像&#xff0c;但它们通常难以生成不常见实体的图像&#xff0c;例如“Chortai&#xff08;狗&#xff09;”或“Picarones&#xff08;食物&#xff09;”。为了解决这个问题&#xff0c;我们提出了检索增强文本到图像生成器…...

南美巴西市场最全分析开发攻略,收藏一篇就够了

巴西位于南美洲东部&#xff0c;是南美洲资源最丰富&#xff0c;经济活力和经济实力最强的国家。巴西作为拉丁美洲的出口大国&#xff0c;一直是一个比较有潜力的市场&#xff0c;亦是我国外贸公司和独立外贸人集群的地方。中国长期是巴西主要的合作伙伴&#xff0c;2022年占巴…...

c++中操作符->与 . 的使用与区别

在C中&#xff0c;-> 和 . 是两个不同的成员访问操作符&#xff0c;用于访问类、结构体或联合体的成员。 “->” 操作符&#xff1a; 用于通过指针访问指针所指向对象的成员。当有一个指向对象的指针时&#xff0c;可以使用 -> 操作符来访问该指针所指向对象的成员。…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

免费批量Markdown转Word工具

免费批量Markdown转Word工具 一款简单易用的批量Markdown文档转换工具&#xff0c;支持将多个Markdown文件一键转换为Word文档。完全免费&#xff0c;无需安装&#xff0c;解压即用&#xff01; 官方网站 访问官方展示页面了解更多信息&#xff1a;http://mutou888.com/pro…...

AI书签管理工具开发全记录(十八):书签导入导出

文章目录 AI书签管理工具开发全记录&#xff08;十八&#xff09;&#xff1a;书签导入导出1.前言 &#x1f4dd;2.书签结构分析 &#x1f4d6;3.书签示例 &#x1f4d1;4.书签文件结构定义描述 &#x1f523;4.1. ​整体文档结构​​4.2. ​核心元素类型​​4.3. ​层级关系4.…...