R²决定系数
R 2 R^2 R2(决定系数)是一个用于衡量统计模型拟合数据的指标,通常用于线性回归分析。它表示模型所解释的因变量(目标变量)方差的比例,范围从0到1。
更具体地说, R 2 R^2 R2告诉我们模型能够解释因变量变化的百分比。当 R 2 R^2 R2接近1时,模型能够很好地拟合数据,因为它能够解释大部分因变量的变化。当 R 2 R^2 R2接近0时,模型无法很好地拟合数据,因为它不能解释因变量的变化。
R 2 R^2 R2的公式如下:
R 2 = 1 − S S R S S T R^2 = 1 - \frac{SSR}{SST} R2=1−SSTSSR
其中:
- R 2 R^2 R2:决定系数
- SSR(Sum of Squares Residual):残差平方和,表示模型预测值与实际观测值之间的差异的总和。
- SST(Total Sum of Squares):总平方和,表示因变量的总变差,即实际观测值与因变量均值之间的差异的总和。
为了更好地理解 R 2 R^2 R2,让我们通过一个通俗易懂的例子来说明:
假设你是一名销售经理,想要建立一个线性回归模型,来预测每月销售额与广告投入的关系。你收集了12个月的数据,如下:
| 月份 | 广告投入(万元) | 销售额(万元) |
|---|---|---|
| 1 | 2.0 | 10.1 |
| 2 | 2.5 | 12.5 |
| 3 | 3.0 | 13.0 |
| 4 | 3.5 | 14.3 |
| 5 | 4.0 | 15.2 |
| 6 | 4.5 | 16.0 |
| 7 | 5.0 | 16.8 |
| 8 | 5.5 | 18.1 |
| 9 | 6.0 | 18.5 |
| 10 | 6.5 | 19.6 |
| 11 | 7.0 | 20.5 |
| 12 | 7.5 | 21.2 |
你建立了一个线性回归模型,拟合出如下的方程:
销售额 = 2.5 ∗ 广告投入 + 5.0 销售额 = 2.5 * 广告投入 + 5.0 销售额=2.5∗广告投入+5.0
现在,让我们计算 R 2 R^2 R2来评估模型的拟合质量。
首先,计算SST(总平方和):
SST = Σ(销售额 - 销售额均值)²
= (10.1 - 16.675)² + (12.5 - 16.675)² + … + (21.2 - 16.675)²
≈ 121.35
接下来,计算SSR(残差平方和),即模型预测值与实际销售额之间的差异的总和:
SSR = Σ(实际销售额 - 模型预测值)²
= (10.1 - (2.5 * 2.0 + 5.0))² + (12.5 - (2.5 * 2.5 + 5.0))² + … + (21.2 - (2.5 * 7.5 + 5.0))²
≈ 23.05
现在,使用R²的公式计算 R 2 R^2 R2:
R 2 = 1 − S S R S S T = 1 − 23.05 121.35 ≈ 0.810 R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{23.05}{121.35} ≈ 0.810 R2=1−SSTSSR=1−121.3523.05≈0.810
这意味着你的模型能够解释销售额变化的大约81%。这是一个相对较高的 R 2 R^2 R2值,表明你的模型相对准确地拟合了数据,广告投入对销售额有较强的解释能力。
相关文章:
R²决定系数
R 2 R^2 R2(决定系数)是一个用于衡量统计模型拟合数据的指标,通常用于线性回归分析。它表示模型所解释的因变量(目标变量)方差的比例,范围从0到1。 更具体地说, R 2 R^2 R2告诉我们模型能够解释…...
软件工程与计算总结(一)软件工程基础
国庆快乐,今天开始更新《软件工程与计算(卷二)》的重要知识点内容~ 一.软件 1.软件独立于硬件 早期的软件是为了计算机硬件在研究型项目中而开发制造的,人们使用专门针对于硬件的指令码和汇编语言编写,这也是最早软件…...
SpringBoot-黑马程序员-学习笔记(一)
8.pom文件中的parent 我们使用普通maven项目导入依赖时,通常需要在导入依赖的时候指定版本号,而springboot项目不需要指定版本号,会根据当前springboot的版本来下载对应的最稳定的依赖版本。 点开pom文件会看到这个: 继承了一个…...
Apache Tomcat安装、运行
介绍 Apache Tomcat是下面多个规范的一个开源实现:Jakarta Servlet、Jakarta Server Pages、Jakarta Expression Language、Jakarta WebSocket、Jakarta Annotations 和 Jakarta Authentication。这些规范是 Jakarta EE 平台的一部分。 Jakarta EE 平台是Java EE平…...
聊聊分布式架构05——[NIO基础]BIO到NIO的演进
目录 I/O I/O模型 BIO示例 BIO与NIO比较 NIO的三大核心 NIO核心之缓冲区 Buffer常用子类: Buffer常用API Buffer中的重要概念 NIO核心之通道 FileChannel 类 FileChannel常用方法 NIO核心之选择器 概述 应用 NIO非阻塞原理分析 服务端流程 客户端…...
聊天、会议、多媒体一体化:多平台支持的即时通讯系统 | 开源日报 No.44
harness/gitness Stars: 28.2k License: Apache-2.0 Gitness 是一个建立在 Drone 之上的新型开源开发者平台,具备代码托管和流水线功能。它提供了以下核心优势: 轻量级、超快速的代码托管和持续集成服务支持 Docker 容器化部署可以在本地环境中构建和…...
收录一些常见的算法题型
常用算法 字符串 s.trim():去掉字符串首尾的空格s.split("\\s"):按照空格对字符串分割 树 前中后序遍历 /*** 统一一下* param root* return*///前序public static List<Integer> preOrder(TreeNode root){List<Integer> list new ArrayList();Stac…...
Node-RED系列教程-25node-red获取天气
安装节点:node-red-contrib-weather 节点图标如下: 使用说明:node-red-contrib-weather (node) - Node-RED 流程图中填写经度和纬度即可。 演示: json内容: {...
Rust中的枚举和模式匹配
专栏简介:本专栏作为Rust语言的入门级的文章,目的是为了分享关于Rust语言的编程技巧和知识。对于Rust语言,虽然历史没有C、和python历史悠远,但是它的优点可以说是非常的多,既继承了C运行速度,还拥有了Java…...
好物周刊#19:开源指北
https://github.com/cunyu1943/JavaPark https://yuque.com/cunyu1943 村雨遥的好物周刊,记录每周看到的有价值的信息,主要针对计算机领域,每周五发布。 一、项目 1. Vditor 一款浏览器端的 Markdown 编辑器,支持所见即所得、…...
分布式数据库(林子雨慕课课程)
文章目录 4. 分布式数据库HBase4.1 HBase简介4.2 HBase数据模型4.3 HBase的实现原理4.4 HBase运行机制4.5 HBase的应用方案4.6 HBase安装和编程实战 4. 分布式数据库HBase 4.1 HBase简介 HBase是BigTable的开源实现 对于网页搜索主要分为两个阶段 1.建立整个网页索引…...
使用UiPath和AA构建的解决方案 3. CRM 自动化
您是否曾经从一个应用程序中查找数据并更新另一个系统? 在许多情况下,人们在系统之间复制和移动数据。有时,可能会发生“转椅活动”,从而导致人为失误。RPA可以帮助我们自动化这些活动,使其更快,同时还可以消除任何人为错误。 在这个项目中,我们将在客户服务中自动化一…...
【C++设计模式之状态模式:行为型】分析及示例
简介 状态模式(State Pattern)是一种行为型设计模式,它允许对象在内部状态改变时改变其行为,看起来就像是改变了其类。状态模式将对象的状态封装成不同的类,并使得对象在不同状态下有不同的行为。 描述 状态模式通过…...
微信小程序使用路由传参和传对象的方法
近期在做微信小程序开发,在页面跳转时,需要携带参数到下一个页面,尤其是将对象传入页面。为了方便重温,特此记录。 路由传字符串参数 原始页面 传递字符串参数比较简单。路由跳转有两种方式,一种是通过navigator组件…...
中国创可贴市场研究与未来预测报告(2023版)
内容简介: 创可贴由胶布(带)、吸水垫、防粘层等组成,胶布以弹性布、棉布、无纺布或PE、PVC、PU打孔膜、TPU等材料为常见基材,涂以氧化锌和橡胶为主要原料的胶浆或医用压敏胶黏剂或丙烯酸酯胶粘剂制成。 目前中国主要…...
水库安全监测方案(实时数据采集、高速数据传输)
一、引言 水库的安全监测对于防止水灾和保障人民生命财产安全至关重要。为了提高水库安全监测的效率和准确性,本文将介绍一种使用星创易联DTU200和SG800 5g工业路由器部署的水库安全监测方案。 二、方案概述 本方案主要通过使用星创易联DTU200和SG800 5g工业路…...
vue项目 ueditor使用示例
简介 UEditor是由百度Web前端研发部开发的所见即所得富文本web编辑器,具有轻量,功能丰富,易扩展等特点。UEditor支持常见的文本编辑功能,如字体、颜色、大小、加粗、斜体、下划线、删除线等,同时还支持超链接、图片上…...
深度学习笔记之优化算法(四)Nesterov动量方法的简单认识
机器学习笔记之优化算法——Nesterov动量方法的简单认识 引言回顾:梯度下降法与动量法Nesterov动量法Nesterov动量法的算法过程描述总结 引言 上一节对动量法进行了简单认识,本节将介绍 Nesterov \text{Nesterov} Nesterov动量方法。 回顾:…...
比 N 小的最大质数
系列文章目录 进阶的卡莎C++_睡觉觉觉得的博客-CSDN博客数1的个数_睡觉觉觉得的博客-CSDN博客双精度浮点数的输入输出_睡觉觉觉得的博客-CSDN博客足球联赛积分_睡觉觉觉得的博客-CSDN博客大减价(一级)_睡觉觉觉得的博客-CSDN博客小写字母的判断_睡觉觉觉得的博客-CSDN博客纸币(…...
JavaScript 生成随机颜色
代码 function color(color) {return (color "0123456789abcdef"[Math.floor(Math.random() * 6)]) && (color.length 6 ? color : arguments.callee(color)); }使用 // 用法1:全部随机生成 "#" color(""); // #201050…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
