当前位置: 首页 > news >正文

kafka怎么实现零拷贝(Zero-Copy)的?

Kafka 实现零拷贝(Zero-Copy)主要依赖于操作系统和底层网络库的支持,而不是特定的算法。这是因为零拷贝是一种优化数据传输的技术,通常是通过操作系统和硬件来实现的。以下是 Kafka 如何实现零拷贝的一般原理:

  1. 直接内存映射(Direct Memory Mapping)

    • Kafka 使用直接内存映射技术,允许将文件或内存中的数据映射到应用程序的地址空间,而无需进行实际的数据复制。
    • 当消息写入 Kafka 时,它们首先被写入到操作系统的文件系统缓存或内核缓冲区中。然后,Kafka 使用直接内存映射技术将这些数据映射到应用程序的内存地址空间。
    • 这使得应用程序可以直接访问内核缓冲区中的数据,而无需将数据从内核复制到应用程序的内存中,从而避免了不必要的数据复制。
  2. 零拷贝网络传输

    • 当 Kafka 生产者或消费者需要将数据发送到网络时,它们可以直接将内存中映射的数据传递给网络库,而不是先将数据复制到网络缓冲区。
    • 网络库会使用这些映射的数据来构建网络数据包,并将其发送到目标机器,而无需将数据从应用程序的内存复制到网络缓冲区。
  3. 文件系统优化

    • Kafka 还依赖于文件系统的优化,以确保数据可以高效地写入和读取。一些文件系统,如 XFS,对零拷贝操作提供了良好的支持,有助于提高 Kafka 的性能。

总之,Kafka 实现零拷贝是通过操作系统的直接内存映射和网络库的支持来实现的。这允许 Kafka 在数据传输过程中避免不必要的数据复制,提高了数据传输的效率和性能。虽然具体的实现细节可能因 Kafka 版本和底层硬件/操作系统而有所不同,但这个基本原理是通用的。

相关文章:

kafka怎么实现零拷贝(Zero-Copy)的?

Kafka 实现零拷贝(Zero-Copy)主要依赖于操作系统和底层网络库的支持,而不是特定的算法。这是因为零拷贝是一种优化数据传输的技术,通常是通过操作系统和硬件来实现的。以下是 Kafka 如何实现零拷贝的一般原理: 直接内存…...

Hive【Hive(四)函数-单行函数】

函数 函数简介 方便完成我们一些复杂的操作,就好像我们 Spark 中的 UDF 函数,避免用户反复写逻辑。 Hive 提供了大量的内置函数,主要可以分为以下几类: 单行函数聚合函数炸裂函数窗口函数 下面的命令可以查看内置函数的相关…...

C语言学生成绩录入系统

一、系统概述 该系统是一个由链表创建主菜单的框架,旨在快速创建学生成绩录入系统的主菜单结构。其主要任务包括: 实现链表的创建、插入和遍历功能,用于存储和展示学生成绩录入系统各个模块的菜单项。 2. 提供用户友好的主菜单界面&#xf…...

操作系统对内存的管理:分配与回收,虚拟内存,内存容量的扩充,内存保护,补充(链接方式、装入方式)

内存:即内存条,也称主存储器(简称主存),用于存放数据。 为了缓和CPU和外存(磁盘)的速度矛盾,外存的程序先放入内存才能被CPU处理。 内存地址从0开始,每个内存地址对应一…...

[开源]基于Vue的拖拽式数据报表设计器,为简化开发提高效率而生

一、开源项目简介 Cola-Designer 是一个 基于VUE,实现拖拽 配置方式生成数据大屏,为简化开发、提高效率而生。 二、开源协议 使用GPL-2.0开源协议 三、界面展示 概览 部分截图: 四、功能概述 特性 0 代码 实现完全拖拽 配置式生成…...

微信小程序——CSS3渐变

SS3 渐变(gradients)可以在两个或多个指定的颜色之间显示平稳的过渡。CSS3 定义了两种类型的渐变(gradients): 说明 1、线性渐变(Linear Gradients)- 向下/向上/向左/向右/对角方向&#xff1…...

CCF中国开源大会专访|毛晓光:“联合”是开源走向“共赢”的必由之路

受访嘉宾 | 毛晓光 记者 | 朱珂欣 2023 CCF 中国开源大会( CCF ChinaOSC )拟于 2023 年 10 月 21 日至 22 日在湖南省长沙市北辰国际会议中心召开。 作为第二届 CCF 中国开源大会,本届大会将组织特邀报告、高峰论坛和领域分论坛等不同类…...

多校联测11 8ady

题目大意 有一个排列 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1​,a2​,…,an​&#xff0c;我们现在进行如下操作&#xff1a; for(int i1;i<n-m1;i) sort(ai,aim);设最后的结果为 b 1 , b 2 , ⋯ , b n b_1,b_2,\cdots,b_n b1​,b2​,⋯,bn​&#xff0c;求满足条件的…...

【软考】9.1 顺序表/链表/栈和队列

《线性结构》 顺序存储和链表存储 每个元素最多只有一个出度和一个入度&#xff0c;表现为一条线状链表存储结构&#xff1a;每个节点有两个域&#xff0c;即数据&#xff0c;指针域&#xff08;指向下一个逻辑上相邻的节点&#xff09; 时间复杂度&#xff1a;与其数量级成正…...

来 来 来 国家开放大学模拟题型 训练

试卷代号&#xff1a;2110 行政法与行政诉讼法 参考试题 一、单项选择题&#xff08;每小题只有一项正确答案&#xff0c;请将正确答案的序号填在括号内。每小题2分&#xff0c;共20分&#xff09; 1.下列案件中属于行政诉讼受案范围的是( )。 A.因人民政府对某工作人员的…...

【ONE·Linux || 多线程(二)】

总言 多线程&#xff1a;生产者消费者模型与两种实现方式&#xff08;条件变量、信号量&#xff09;、线程池。 文章目录 总言4、生产者消费者模型4.1、基本概念4.2、基于BlockingQueue的生产者消费者模型&#xff08;理解条件变量&#xff09;4.2.1、单生产者单消费者模式&am…...

pandas.DataFrame.to_excel:在同一个sheet内追加数据

参考了这篇文章的方法 pandas to_excel:写入数据&#xff0c;在同一个sheet中追加数据&#xff0c;写入到多个sheet里&#xff0c;基本逻辑是&#xff1a; 通过数据框获取到该Excel表的行数 df_rows&#xff0c;然后将需要存储的数据&#xff0c;限制开始写入的行数&#xff0c…...

基于卷积神经网络的图像识别技术研究与实践

基于卷积神经网络的图像识别技术研究与实践 卷积神经网络&#xff08;CNN&#xff09;是一种深度学习模型&#xff0c;它在图像识别领域取得了显著的成果。本文旨在探讨基于卷积神经网络的图像识别技术研究与实践。 一、卷积神经网络概述 卷积神经网络是一种深度学习模型&am…...

Linux防火墙之--SNAT和DNAT

1.SNAT是什么 SNAT又称源地址转换。源地址转换是内网地址向外访问时&#xff0c;发起访问的内网ip地址转换为指定的ip地址&#xff08;可指定具体的服务以及相应的端口或端口范围&#xff09;&#xff0c;这可以使内网中使用保留ip地址的主机访问外部网络&#xff0c;即内网的多…...

Bean注入方式:@Autowired、@Resource的区别

Autowired 和 Resource 的区别是什么&#xff1f; Autowired 属于 Spring 内置的注解&#xff0c;默认的注入方式为 byType&#xff08;根据类型进行匹配&#xff09;&#xff0c;也就是说会优先根据接口类型去匹配并注入 Bean &#xff08;接口的实现类&#xff09;。 这会有…...

软件设计原则 1小时系列 (C++版)

文章目录 前言基本概念 Design Principles⭐单一职责原则(SRP) Single Responsibility PrincipleCode ⭐里氏替换原则(LSP) Liskov Substitution PrincipleCode ⭐开闭原则(OCP) Open Closed PrincipleCode ⭐依赖倒置原则(DIP) Dependency Inversion PrincipleCode ⭐接口隔离…...

数据结构--》解锁数据结构中树与二叉树的奥秘(一)

数据结构中的树与二叉树&#xff0c;是在建立非线性数据结构方面极为重要的两个概念。它们不仅能够模拟出生活中各种实际问题的复杂关系&#xff0c;还常被用于实现搜索、排序、查找等算法&#xff0c;甚至成为一些大型软件和系统中的基础设施。 无论你是初学者还是进阶者&…...

23.4 Bootstrap 框架5

1. 背景颜色 1.1 背景颜色样式 在Bootstrap 5中, 可以使用以下类来设置背景颜色: * 1. .bg-primary: 设置为主要的背景颜色(#007bff, 深蓝色). * 2. .bg-secondary: 设置为次要的背景颜色(#6c757d, 灰色). * 3. .bg-success: 设置为成功的背景颜色(#28a745, 绿色). * 4. …...

Spring源码解析——IOC属性填充

正文 doCreateBean() 主要用于完成 bean 的创建和初始化工作&#xff0c;我们可以将其分为四个过程&#xff1a; 最全面的Java面试网站 createBeanInstance() 实例化 beanpopulateBean() 属性填充循环依赖的处理initializeBean() 初始化 bean 第一个过程实例化 bean在前面一篇…...

寒露到了,冬天还会远吗?

寒露惊秋晚&#xff0c;朝看菊渐黄。 日复一日间&#xff0c;光影如梭&#xff0c;我们便很快将告别了秋高气爽&#xff0c;白日将变得幽晦&#xff0c; 天寒夜长&#xff0c;风气萧索&#xff0c;雾结烟愁。 还没好好体会秋高气爽,寒露就到了。 今天晚上9点多&#xff0c;我们…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...