Deep learning of free boundary and Stefan problems论文阅读复现
Deep learning of free boundary and Stefan problems论文阅读复现
- 摘要
- 1. 一维一相Stefan问题
- 1.1 Direct Stefan problem
- 1.2 Inverse Type I
- 1.3 Inverse Type II
- 2. 一维二相Stefan问题
- 2.1 Direct Stefan problem
- 2.2 Inverse Type I
- 2.3 Inverse Type II
- 3. 二维一相Stefan问题
- 参考
摘要
在这项工作中,作者提出了一个基于物理信息神经网络的多网络模型,来解决一类一般的正和逆自由边界问题,称为Stefan问题。具体地说,用两个深度神经网络来近似未知解以及任何移动边界。作者提供了三个案例研究(一维一相Stefan问题,一维二相Stefan问题,二维一相Stefan问题),每个案例分别研究了正问题和两个逆问题,相关代码可以在https://github.com/PredictiveIntelligenceLab/DeepStefan获得。
复现代码环境:
conda create -n tensorflow1x python=3.6
conda activate tensorflow1x
pip install tensorflow==1.15.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install seaborn -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
1. 一维一相Stefan问题
- Direct Stefan problem: 已知 u 0 , g ( t ) , s 0 , h 1 ( t ) , h 2 ( t ) u_0, g(t), s_0, h_1(t), h_2(t) u0,g(t),s0,h1(t),h2(t) ,求解 u ( x , t ) : Ω → R . u(x,t):\Omega \rightarrow \mathbb{R}. u(x,t):Ω→R.
- Inverse Type I: 希望找到满足方程(3.1),(3.2),(3.5),(3.6)的温度分布 u ( x , t ) u(x,t) u(x,t) ,也希望当移动边界 s ( t ) s(t) s(t)已知时重构 Dirichlet 和 Neumann 边界条件。
- Inverse Type II: 给出域 Ω \Omega Ω 中的一些温度测量值,试图找到满足方程 (3.1),(3.4),(3.5) 的温度解 u ( x , t ) u(x,t) u(x,t),并确定移动边界 s(t) 的未知位置。
1.1 Direct Stefan problem
方程 (3.1)-(3.6) 中已知变量由 (3.7)-(3.8) 表示,(3.9) 和 (3.10) 分别是该问题的精确解和移动边界的解。
文章作者使用两个独立的神经网络近似潜在的 u ( x , t ) u(x,t) u(x,t) 和 s ( t ) s(t) s(t),训练40000epoch,一个epoch从初始条件 x = 0 , x=0, x=0, 边界条件 t = 0 , t=0, t=0, 和内部 Ω ∈ Ω ∗ = [ 0 , 1 ] × [ 0 , 1 ] \Omega \in \Omega^*=[0,1]\times[0,1] Ω∈Ω∗=[0,1]×[0,1] 中各随机选择一个batch_size(128)数据点进行训练,没有用到真解。由于 s ( t ) s(t) s(t) 在我们的问题设置中是未知的,所以我们不能简单地在 ( 0 , s ( t ) × ( 0 , t ) (0,s(t)\times(0,t) (0,s(t)×(0,t) 中进行采样点。处理这一技术问题的一种方法是对整个计算域 Ω ∗ \Omega^* Ω∗ 中的配置点进行采样,这是先验已知的,但然后通过将预测解 u θ ( x , t ) u_{\theta}(x,t) uθ(x,t) 限制在域 ( 0 , s β ( t ) × ( 0 , t ) (0,s_{\beta}(t)\times(0,t) (0,sβ(t)×(0,t) 来关注物理解。损失函数如下:
论文中实验结果:
复现的实验结果:
The u(x,t) relative L 2 L_2 L2-error is 4.64e-04.
The s(t) relative L 2 L_2 L2-error is 3.32e-04.
1.2 Inverse Type I
这种类型的逆问题也叫移动边界设计问题,这里的目标是找到满足方程 (3.1)-(3.6) 的解,并在给定自由边界 s ( t ) s(t) s(t) 信息的情况下恢复狄利克雷和诺伊曼边界条件 ( 3.18 ) (3.18) (3.18) 。
论文中实验结果:
复现实验结果:
The u(x,t) relative L 2 L_2 L2-error is 2.48e-03.
The u θ u_{\theta} uθ(0,t) relative L 2 L_2 L2-error is 3.32e-03.
The ∂ u θ ∂ x \frac{\partial u_{\theta}}{\partial x} ∂x∂uθ(0,t) relative L 2 L_2 L2-error is 5.39e-03.
1.3 Inverse Type II
给定少量测试点 { u ( x d a t a j , t d a t a j ) } j = 1 M \{u(x_{data}^j, t_{data}^j)\}_{j=1}^M {u(xdataj,tdataj)}j=1M,我们想得到在域 Ω \Omega Ω 上符合热方程(3.1)的 u ( x , t ) u(x,t) u(x,t),以及未知边界符合(3.4)-(3.6)的 s ( t ) s(t) s(t),这样不需要任何初始或边界条件,这是接近许多现实的应用,这样的信息可能难以获得。为了解决这个问题,依然用两个神经网络 u θ ( x , t ) , s β ( t ) u_{\theta}(x,t),s_{\beta}(t) uθ(x,t),sβ(t) 近似 u ( x , t ) , s ( t ) u(x,t),s(t) u(x,t),s(t)。损失函数如下所示:
论文中实验结果:
复现实验结果:
The u(x,t) relative L 2 L_2 L2-error is 2.83e-03.
The s(t) relative L 2 L_2 L2-error is 4.11e-04.
2. 一维二相Stefan问题
2.1 Direct Stefan problem
复现实验结果:
The u(x,t) relative L 2 L_2 L2-error is 6.35e-04.
The s(t) relative L 2 L_2 L2-error is 2.78e-04.
2.2 Inverse Type I
复现实验结果:
The u(x,t) relative L 2 L_2 L2-error is 2.71e-03.
The s(t) relative L 2 L_2 L2-error is 1.06e-03.
2.3 Inverse Type II
复现实验结果:
The u(x,t) relative L 2 L_2 L2-error is 1.71e-03.
The s(t) relative L 2 L_2 L2-error is 2.94e-04.
3. 二维一相Stefan问题
略
参考
[1] Deep learning of free boundary and Stefan problems
[2] https://github.com/PredictiveIntelligenceLab/DeepStefan
相关文章:

Deep learning of free boundary and Stefan problems论文阅读复现
Deep learning of free boundary and Stefan problems论文阅读复现 摘要1. 一维一相Stefan问题1.1 Direct Stefan problem1.2 Inverse Type I1.3 Inverse Type II 2. 一维二相Stefan问题2.1 Direct Stefan problem2.2 Inverse Type I2.3 Inverse Type II 3. 二维一相Stefan问题…...

LeetCode 1277. 统计全为 1 的正方形子矩阵【动态规划】1613
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

测试部门来了个00后卷王之王,老油条感叹真干不过,但是...
都说00后躺平了,但是有一说一,该卷的还是卷。 这不,前段时间我们公司来了个00后,工作都没两年,跳槽到我们公司起薪18K,都快接近我了。后来才知道人家是个卷王,从早干到晚就差搬张床到工位睡觉了…...

360 G800行车记录仪,不使用降压线如何开机,8芯插头的定义。
G800记录仪的插头是这样的,图中标出了线的颜色。其中红色为常电V,黑色为GND负极,黄色为ACC受车是否启动控制。 这个记录仪原装的电源线没有降压功能,所以这里的V是12V。 记录仪内部有电源板,负责将12V降压为5V。 如果…...
vue2踩坑之项目:Swiper轮播图使用
首先安装swiper插件 npm i swiper5 安装出现错误:npm ERR npm ERR! code ERESOLVE npm ERR! ERESOLVE could not resolve npm ERR! npm ERR! While resolving: vue/eslint-config-standard6.1.0 npm ERR! Found: eslint-plugin-vue8.7.1 npm ERR! node_modules/esl…...
python经典百题之分桃子
题目:海滩上有一堆桃子,五只猴子来分。第一只猴子把这堆桃子平均分为五份,多了一个,这只 猴子把多的一个扔入海中,拿走了一份。第二只猴子把剩下的桃子又平均分成五份,又多了 一个,它同样把多的一个扔入海中…...

vscode ssh linux C++ 程序调试
vscode调试c++程序相比vs2022要复杂很多,vs2022可以"一键运行调试",vscode则需要自己配置。 vscode调试程序时,会在当前工作目录产生.vscode 目录, 该目录有两个重要文件launch.json和tasks.json, 下面介绍两种调试方法: 手动调试和自动调试。 手动调试 不管…...
VUE和Angular有哪些区别?
Vue.js和Angular是两个流行的前端JavaScript框架,它们有一些明显的区别,包括以下几个方面: 1、语言和工具链的选择: Vue.js使用HTML、JavaScript和CSS来创建组件,使得它更容易学习,因为它使用了常见的Web…...

云原生边缘计算KubeEdge安装配置(二)
1. K8S集群部署,可以参考如下博客 请安装k8s集群,centos安装k8s集群 请安装k8s集群,ubuntu安装k8s集群 请安装kubeedge cloudcore centos安装K8S 2.安装kubEedge 2.1 编辑kube-proxy使用ipvs代理 kubectl edit configmaps kube-proxy -…...

SQL多表设计--一对多(外键)
-- 完成部门和员工的-- 选择当前db03 这个数据库use db03;-- 查看当前选中的数据库select database();-- 创建员工表create table tb_emp (id int unsigned primary key auto_increment comment ID,username varchar(20) not null unique comment 用户名,password varchar(32)…...

Stm32_标准库_9_TIM
频率(HZ)是频率的基本单位1HZ是1s的倒数 STM32F103C8T6一般情况给定时器的内部时钟都是72MHz(系统主频率) TIM基本构成 计数器、预分频器、自动化重装 // 都是16位其中计数器、自动化重装,都是16位换算成10进制范围为[0, 655536] 时间 1 /…...
283. 移动零
283. 移动零 原题 /** 左指针左边均为非零数; 右指针左边直到左指针处均为零。*/ class Solution {public void moveZeroes(int[] nums) {int left 0;int right 0;while(right<nums.length){if(nums[right]!0){swap(nums,left,right);left;}right;}}public v…...

用 HTTP 提交数据,基本就这 5 种方式
网页开发中,向服务端提交数据是一个基本功能,工作中会大量用 xhr/fetch 的 api 或者 axios 这种封装了一层的库来做。 可能大家都写过很多 http/https 相关的代码,但是又没有梳理下它们有哪几种呢? 其实通过 http/https 向服务端…...

基于matlab统计Excel文件一列数据中每个数字出现的频次和频率
一、需求描述 如上表所示,在excel文件中,有一列数,统计出该列数中,每个数出现的次数和频率。最后,将统计结果输出到新的excel文件中。 二、程序讲解 第一步:选择excel文件; [Filename, Pathn…...

近期分享学习心得3
1、全屏组件封装 先看之前大屏端的监控部分全屏代码 整块全屏代码 常规流是下面这种 //进入全屏 function full(ele) {//if (ele.requestFullscreen) {// ele.requestFullscreen();//} else if (ele.mozRequestFullScreen) {// ele.mozRequestFullScreen();//} el…...

前端uniapp如何修改下拉框uni-data-select下面的uni-icons插件自带的图片【修改uniapp自带源码图片/图标】
目录 未改前图片未改前源码未改前通过top和bottom 和修改后图片转在线base64大功告成最后 未改前图片 未改前源码 然后注释掉插件带的代码,下面要的 未改前通过top和bottom 和修改后 找到uni-icons源码插件里面样式 图片转在线base64 地址 https://the-x.cn/b…...

【计算机基础】Git系列3:常用操作
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

有哪些值得推荐的Java 练手项目?
大家好,我是 jonssonyan 我是一名 Java 后端程序员,偶尔也会写一写前端,主要的技术栈是 JavaSpringBootMySQLRedisVue.js,基于我学过的技术认真的对每个分享的项目进行鉴别,今天就和大家分享我曾经用来学习的开源项目…...
【Godot】时间线(技能)节点
4.1 游戏中一般都会有各种各样的技能,或者其他需要按一定的时间顺序去执行的功能。 这里我写出了一个时间线节点,就像是在播放动画一样,按一定的阶段去执行某些功能 # # Timeline # # - author: zhangxuetu # - datetime: 2023-09-24 23…...

每日练习-9
目录 1、井字棋 2、密码强度等级 3、二维数组中的查找 4.调整数组奇数偶数 5.旋转数组中的最小元素 6、替换空格 1、井字棋 解析:井字棋有四种情况表示当前玩家获胜,行全为1, 列全为1,主对角全为1, 副对角全为1。遍历…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...