python中pytorch的广播机制——Broadcasting
广播机制
numpy 在算术运算期间采用“广播”来处理具有不同形状的 array ,即将较小的阵列在较大的阵列上“广播”,以便它们具有兼容的形状。Broadcasting是一种没有copy数据的expand
- 不过两个维度不相同,在前面插入维度1
- 扩张维度1到相同的维度
例如:Feature maps:[4,32,14,14]
Bias:[32,1,1]=>[1,32,1,1]=>[4,32,14,14]
A:[32,1,1]=>[1,32,1,1]=>[4,32,14,14]
B:[4,32,14,14]
这里就可以进行相同维度的相加
比如说一个[4,1]+[1,2]
那么这个[4,1]可以再复制列变为[4,2]
[1,2]可以再复制4行变为[4,2]
首先用1将那个小的维度的tensor扩展成大的维度相同的维度,然后将1扩张成两者的相同维度,如果有两个维度不相同,并且都不是1的话,则不能broadcasting
广播规则
当对两个 array 进行操作时,numpy 会逐元素比较它们的形状。从尾(即最右边)维度开始,然后向左逐渐比较。只有当两个维度 1)相等 or 2)其中一个维度是1 时,这两个维度才会被认为是兼容。
如果不满足这些条件,则会抛出 ValueError:operands could not be broadcast together 异常,表明 array 的形状不兼容。最终结果 array 的每个维度尽可能不为 1 ,是两个操作数各个维度中较大的值 。
例如,有一个 256x256x3 的 RGB 值图片 array ,需要将图像中的每种颜色缩放不同的值,此时可以将图像乘以具有 3 个值的一维 array 。根据广播规则排列这两个 array 的尾维度大小,是兼容的:
图片(3d array): 256 x 256 x 3
缩放(1d array): 3
结果(3d array): 256 x 256 x 3
当比较的任一维度是 1 时,使用另一个,也就是说,大小为 1 的维度被拉伸或“复制”以匹配另一个维度。
在以下示例中,A 和 B 数组都有长度为 1 的维度,在广播操作期间扩展为更大的大小:
A (4d array): 8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
result (4d array): 8 x 7 x 6 x 5
以二维为例,更加方便的解释“广播”:
已知 a.shape 是(5,1),b.shape 是(1,6),c.shape 是(6,),d.shape 是(), d 是一个标量, a, b, c,和 d 都可以“广播”到维度 (5,6);
a “广播”为一个 (5,6) array ,其中 a[:,0] 被“广播”到其他列,
b “广播”为一个 (5,6) array ,其中 b[0,:] 被广播到其他行,
c 类似于 (1,6) array ,其中 c[:] 广播到每一行,
d 是标量,“广播”为 (5,6) array ,其中每个元素都一样,重复d值。
A (2d array): 2 x 1
B (3d array): 8 x 4 x 3 # 倒数第二个维度不兼容
>>> a = np.array([[ 0.0, 0.0, 0.0],
... [10.0, 10.0, 10.0],
... [20.0, 20.0, 20.0],
... [30.0, 30.0, 30.0]])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a + b
array([[ 1., 2., 3.],[11., 12., 13.],[21., 22., 23.],[31., 32., 33.]])
>>> b = np.array([1.0, 2.0, 3.0, 4.0])
>>> a + b
Traceback (most recent call last):
ValueError: operands could not be broadcast together with shapes (4,3) (4,)
在某些情况下,广播会拉伸两个 array 以形成一个大于任何一个初始 array 的结果 array 。
>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1., 2., 3.],[11., 12., 13.],[21., 22., 23.],[31., 32., 33.]])
newaxis
运算符将新轴插入到 a 中,使其成为二维 4x1 array 。将 4x1 array 与形状为 (3,) 的 b 组合,产生一个 4x3 array 。
这里注意要都从右端进行匹配:
A:[ ]
B: [ ]
就是这样补充
我们看个例子吧:
a=torch.randn(2,3,4)
b=torch.randn(2,3)
a+b
#The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimension 2
但是这样是可以的
也就是(2,3,4)+(2,3)是不可以的,(2,3,4)+(3,4)是可以的,因为他们是右看齐的。
Situation 1:
▪ [4, 32, 14, 14]
▪ [1, 32, 1, 1] => [4, 32, 14, 14]
Situation 2
▪ [4, 32, 14, 14]
▪ [14, 14] => [1, 1, 14, 14] => [4, 32, 14, 14]
Situation 3
▪ [4, 32, 14, 14]
▪ [2, 32, 14, 14]
▪ Dim 0 has dim, can NOT insert and expand to same
▪ Dim 0 has distinct dim, NOT size 1
▪ NOT broadcasting-able
Situation 4
▪ [4, 32, 14, 14]
▪ [4, 32, 14]
这样是不行的,因为我们要右看齐,match from
last dim
Situation 5
▪ [4, 3, 32, 32]
▪ + [32, 32]
▪ + [3, 1, 1]
▪ + [1, 1, 1, 1]
这都是可以的
相关文章:

python中pytorch的广播机制——Broadcasting
广播机制 numpy 在算术运算期间采用“广播”来处理具有不同形状的 array ,即将较小的阵列在较大的阵列上“广播”,以便它们具有兼容的形状。Broadcasting是一种没有copy数据的expand 不过两个维度不相同,在前面插入维度1扩张维度1到相同的维…...

基于BES平台音乐信号处理之DRC算法实现
基于BES平台音乐信号处理之DRC算法实现 是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?加我微信hezkz17, 本群提供音频技术答疑服务 1 DRC实现 drc.h 2 调用 audio_process.c 3 DRC动态范围控制算法在音乐信号处理中的位置 4 DRC具体细节源码 可参考…...
如何加快香山处理器Chisel->Verilog编译速度
graalvm installation 更换JVM。我们推荐使用GraalVM代替OpenJDK。 使用GraalVM免费版作为JVM编译香山比OpenJDK快10%-20%。 -------------------------------------------------------------------------- https://www.graalvm.org/latest/docs/getting-started/linux/ downl…...

pillow篇---pillow连续打开同一张图片会导致打开失败问题
如果你需要在多次操作同一张图像时避免出现缓存问题,你可以使用 Image.open() 方法的 seek() 方法将文件指针移动到图像数据的开头,以便重新读取图像数据。示例如下: from PIL import Image# 打开图像文件 image Image.open(example.jpg)# …...

详细解说iptables 高阶用法,用来完成哪些高效率网络路由策略场景,iptables 实现域名过滤,Linux如何利用iptables屏蔽某些域名?
详细解说iptables 高阶用法,用来完成哪些高效率网络路由策略场景,iptables 实现域名过滤,Linux如何利用iptables屏蔽某些域名? Linux利用iptables屏蔽某些域名 以下规则是屏蔽以 youtube.com 为主的所有一级 二级 三级等域名。 iptables -A OUTPUT -m string --string &qu…...

面试总结-Redis篇章(十二)——Redis是单线程的,为什么还那么快
Redis是单线程的,为什么还那么快 Redis是单线程的,为什么还那么快什么是IO多路复用 阻塞IO非阻塞IOIO多路复用 Redis是单线程的,为什么还那么快 Redis是纯内存操作,执行速度非常快采用单线程,避免不必要的上下文切换可…...

5.编写程序 超强力方法
5.1 创建战舰游戏 创建一个类似战舰的游戏:攻击网站 有一种棋盘类的战舰游戏,目标是要猜测对方战舰的坐标,然后轮流开炮攻击,命中数发就可以打沉对方的战舰。不过我们不喜欢战争,只要打垮这些达康公司就好(因为与商业…...

超详细DeepLabv3 介绍与使用指南 – 使用 PyTorch 推理
DeepLab 模型首次在 ICLR 14 中首次亮相,是一系列旨在解决语义分割问题的深度学习架构。经过多年的迭代改进,谷歌研究人员的同一个团队在 17 年底发布了广受欢迎的“DeepLabv3”。当时,DeepLabv3 在 Pascal VOC 2012 测试集上实现了最先进的 (SOTA) 性能,在著名的 Cityscap…...

移动应用-Android-开发指南
Android-UI开发指南 Android Studio调试UI设计UI框架布局Layout文本框 android的活动Activity基本概念Activity的生命周期Activity栈创建Activity管理ActivityActivity间传递数据 FragmentAdapterRecyclerViewRecyclerView Adapter(适配器)事件setOnItem…...

免费开源的非标项目型制造BOM一键导入方案介绍
非标项目型制造,每一个订单都会引入很多新料号、新BoM、新工艺路线。实施ERP/MES系统,实现生产管理数字化,第一步就是要导入这些料号、BoM和工艺。项目型制造,大多数订单只生产一次。但在ERP/MES系统中,订单的料号、Bo…...

用合成数据训练车辆姿态估计神经网络
我们的客户希望开发一款应用程序,引导用户通过 AR 指南和自动照片拍摄来拍摄更高质量的汽车照片。 本文重点介绍构建汽车姿态估计组件的技术。 在应用程序中,用户被引导站在与汽车一定的角度和距离,以标准化的方式捕捉最好的照片。 当用户处于…...

【QT开发笔记-基础篇】| 第四章 事件QEvent | 4.5 键盘事件
本章要实现的整体效果如下: QEvent::KeyPress 键盘按下时,触发该事件,它对应的子类是 QKeyEvent QEvent::KeyRelease 键盘抬起时,触发该事件,它对应的子类是 QKeyEvent 本节通过两个案例来讲解这 2 个事件&…...

爬取微博热榜并将其存储为csv文件
🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 前言1.…...

国庆中秋特辑(八)Spring Boot项目如何使用JPA
国庆中秋特辑系列文章: 国庆中秋特辑(八)Spring Boot项目如何使用JPA 国庆中秋特辑(七)Java软件工程师常见20道编程面试题 国庆中秋特辑(六)大学生常见30道宝藏编程面试题 国庆中秋特辑&…...

用jad反编译工具查看java接口相关的默认修饰符
接口抽象类复习 -> 默认修饰符是啥 -> jad反编译证明 https://www.cnblogs.com/changrunwei/p/6618117.html 文章目录 背景操作过程反编译前后对比操作截图结论 背景 今天刷到这篇文章,想起之前笔试题总是记不清,所以想证明下。 之前一直不清楚要…...

axios的get请求时数组参数没有下标
开发新项目过程中 发现get请求时 数组参数没有下标 这样肯定是不行的 后端接口需要数组[0]: 7 数组[1]:4这样的数据 原因是因为在请求拦截器没有处理需要的参数 解决方法 在请求拦截器 处理一下参数 import axios, { AxiosError, AxiosInstance, AxiosRequestHeaders } fro…...

bochs 对 Linux0.11 进行调试 (TODO: 后面可以考虑集成 vscode+gdb+qemu)
我在阅读 Linux0.11 源码时,对一个指令 LDS 感到困惑。 看了下 intel 指令集手册,能猜到 LDS 的功能,但不确定。 于是决定搭建调试环境,看看 LDS 的功能是否真如自己猜测。 首先 make debug 运行 qemu-Linux0.11,命…...

一文告知HTTP GET是否可以有请求体
HTTP GET是否可以有请求体 先说结论: HTTP协议没有规定GET请求不能携带请求体,但是部分浏览器会不支持,因此不建议GET请求携带请求体。 HTTP 协议没有为 GET 请求的 body 赋予语义,也就是即不要求也不禁止 GET 请求带 body。大多数…...

防止SQL注入攻击的综合解决方案
文章目录 摘要背景和危害性防御措施示例代码(Java)示例代码(PHP)示例MySQL命令示例代码(Python)示例代码(C#,使用Entity Framework) 进一步防御SQL注入攻击的措施使用ORM…...

MapReduce(林子雨慕课课程)
文章目录 7. MapReduce7.1 MapReduce简介7.1.1 分布式并行编程7.1.2 MapReduce模型简介 7.2 MapReduce体系结构7.3 MapReduce工作流程概述7.4 Shuffle过程原理7.5 MapReduce应用程序的执行过程7.6 WordCount实例分析7.7 MapReduce的具体应用7.8 MaReduce编程实践 7. MapReduce …...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...