当前位置: 首页 > news >正文

R实现数据分布特征的视觉化——多笔数据之间的比较

      大家好,我是带我去滑雪!

      如果要对两笔数据或者多笔数据的分布情况进行比较,Q-Q图、柱状图、星形图都是非常好的选择,下面开始实战。     

(1)绘制Q-Q图

     首先导入数据bankwage.csv文件,该数据集包含474条数据,变量分别是wage(数值)、wage0(数值)、edu(数值)、gender(字符)、minority(字符)、job(字符):

bankwage=read.csv("bankwage.csv")

     目的:尝试比较员工薪酬上是否存在性别差异。

mwage = subset(bankwage, gender == "Male")$wage_current
fwage = subset(bankwage, gender == "Female")$wage_current
qqplot(mwage, fwage, xlim = range(wage_current), ylim = range(wage_current),  xaxs = "i", yaxs = "i", xlab = "Male workers' wage", ylab = "Female workers' wage")
abline(0, 1)

输出结果:

43f6f8a72f0f41a48e135a0247a82952.png

     通过图像,可以发现薪酬分布倾向男性,说明男性和女性在薪酬上存在性别差异。

(2)绘制柱状图

       数据采用国际上13个交易市场的市价总值数据,目的是比较多个市场市价总值2003年到2008年的差别情况,使用柱状图呈现数据。

load("Cap.RData")
par(mfrow=c(2,1))
barplot(t(Cap)/1e+06, beside = T,las=3,ylab="Capitalization")
title(main = "Major Stock Markets")
mtext(side = 3, "2003 - 2008")
barplot(Cap/1e+06, beside = TRUE,ylab="Capitalization")
par(mfrow=c(1,1))

输出结果:

9527e03ea85542abb998f482c34cbe6e.png

(3)星形图

       星形图(Star Plot),也称为雷达图(Radar Plot)或蜘蛛图(Spider Plot),是一种用于可视化多维数据的图表类型。它以一个多边形的形式显示了多个变量或特征的值,使您能够比较各个特征之间的相对大小和分布。星形图通常用于展示数据的多维特征,特别适用于在不同类别或维度上比较多个观测值的情况。

palette(rainbow(13, s = 0.6, v = 0.75))
stars(t(log(Cap)), draw.segments = TRUE, ncol = 3, nrow = 2,
      key.loc = c(4.6, -0.5), mar = c(15, 0, 0, 0))
mtext(side = 3, line = 2.2, text = "Growth and Decline of Major Stock Markets",
      cex = 1.5, font = 2)
abline(h = 0.9)
输出结果:

481c315395b64c6dbbcb1aff238a1fb2.png

(4)相关性绘图

       分析数值型数据时,变量间的相关性是一项重点,使用corrgram()函数用图形及其组合将相关系数矩阵可视化。可以通过图形色彩、形状等特征轻松地判断相关性是正还是负,甚至相关系数是否显著。

library(corrgram)        
data(auto)
head(auto)
vars_name = setdiff(colnames(auto), c("Model", "Origin"))
low=panel.conf
up=panel.pie
txt=panel.txt
diag=NULL  #or panel.minmax
corrgram(auto[, vars_name],lower.panel=low, upper.panel=up, text.panel=txt,diag.panel=diag, order=TRUE, main="Auto data (PC order)")

输出结果:

967b1138618c44d1b7a0b81b3b619d2a.png


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

相关文章:

R实现数据分布特征的视觉化——多笔数据之间的比较

大家好,我是带我去滑雪! 如果要对两笔数据或者多笔数据的分布情况进行比较,Q-Q图、柱状图、星形图都是非常好的选择,下面开始实战。 (1)绘制Q-Q图 首先导入数据bankwage.csv文件,该数据集…...

TCPUDP

TCP 1.什么是TCP TCP是处于运输层的通信协议,该协议能够实现数据的可靠性传输。 2.TCP报文格式 源端口和目的端口:各占两个字节,发送进程的端口和接收进程的端口号。 序号:占4个字节,序号如果增加到溢出,则下一个序…...

设计模式 - 备忘录模式

目录 一. 前言 二. 实现 三. 优缺点 一. 前言 备忘录模式又称快照模式,是一种行为型设计模式。它可以在不破坏封装性的前提下捕获一个对象的内部状态,并在对象之外保存这个状态,以便在需要的时候恢复到原先保存的状态。在不违反封装的情况…...

OpenCV4(C++)—— 几何图形的绘制

文章目录 一、基本图形1、线2、线圆3、线椭圆4、矩形 二、多边形 一、基本图形 1、线 绘制线,要给出两个点坐标 void cv::line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, int thickness 1, int lineType LINE_8, int shift 0);…...

智能优化算法常用指标一键导出为EXCEL,CEC2017函数集最优值,平均值,标准差,最差值,中位数,秩和检验,箱线图...

声明:对于作者的原创代码,禁止转售倒卖,违者必究! 之前出了一篇关于CEC2005函数集的智能算法指标一键统计,然而后台有很多小伙伴在询问其他函数集该怎么调用。今天采用CEC2017函数集为例,进行展示。 为了突…...

python文件打包方式汇总

在Python中,你可以使用多种方法来打包你的项目,以下是最常见的两种方式: 使用PyInstaller: PyInstaller是一个非常实用的工具,可以将Python程序打包成独立的可执行文件。这样,你就可以在没有Python环境的…...

基于ChatGPT+词向量/词嵌入实现相似商品推荐系统

最近一个项目有个业务场景是相似商品推荐,给一个商品描述(比如 WIENER A/B 7IN 5/LB FZN ),系统给出商品库中最相似的TOP 5种商品,这种单纯的推荐系统用词向量就可以实现,不过,这个项目特点是商品库巨大,有…...

虾皮商品链接获取虾皮商品详情数据(用 Python实现虾皮商品信息抓取)

在网页抓取方面,可以使用 Python、Java 等编程语言编写程序,通过模拟 HTTP 请求,获取虾皮网站上的商品页面。在数据提取方面,可以使用正则表达式、XPath 等方式从 HTML 代码中提取出有用的信息。值得注意的是,虾皮网站…...

【数据库系统概论】数据查询之单表查询。详细解释WHERE、OEDER BY、GROUP BY 和 HAVING

前言 ❓单表查询选择表中的若干列查询经过计算的值选择表中的若干元组(行)消除取值重复的行查询满足条件的元组(WHERE) 对查询结果排序(ORDER BY)聚集函数对查询结果分组(GROUP BY) …...

2023年医药商业行业发展研究报告

第一章 行业概况 1.1 定义 医药商业行业,作为医药领域的重要组成部分,扮演着至关重要的角色。这一行业专注于医药商品的经营与流通,确保药品能够有效、安全地到达消费者手中。随着医药科技的进步和市场需求的增长,医药商业行业在…...

Android 消息机制

Android 消息机制 Android 的消息机制也是Handler机制,主要作用是用来在不同线程之间通信,通常使用在子线程执行完成一些儿耗时操作,需要回到主线程更新UI时,通过Handler将有关UI操作切换到主线程。由于Android中主线程不可进行耗…...

QT计时器QTime的使用举例

Qt 中的计时器(QTimer)是一种用于执行定时操作的机制。您可以使用 QTimer 来执行周期性任务、在一段时间后执行操作或创建间隔定时器。以下是使用 QTimer 的基本步骤以及一个简单的示例: **包含头文件:**首先,确保您的…...

js中await用法

在JavaScript中,await用于暂停异步函数执行,等待Promise对象的解决。当Promise对象解决时,await将返回被解决的值,否则它将抛出一个被拒绝的Promise错误。 下面是一些使用await的例子: 使用await等待一个Promise对象…...

Qt多工程同名字段自动翻译工具

开发背景 项目里不同工程经常会引用同一批公共类,这些类里如果有字段需要翻译,需要在不同的项目里都翻译一遍,比较麻烦冗余。 特此开发了这个小翻译工具,能读取程序目录下的所有ts文件,以类名归类,不同项目…...

vue3+elementui实现表格样式可配置

后端接口传回的数据格式如下图 需要依靠后端传回的数据控制表格样式 实现代码 <!-- 可视化配置-表格 --> <template><div class"tabulation_main" ref"myDiv"><!-- 尝试过在mounted中使用this.$refs.myDiv.offsetHeight,获取父元素…...

x11截屏源码(ubuntu18.04)

使用x11库实现截屏并保存为png图片 【shot.c】 // filename: shot.c #include <X11/Xlib.h> #include <X11/Xutil.h> #include <X11/Xatom.h> #include <X11/cursorfont.h> #include <png.h> #include <stdio.h> #include <stdlib.h>…...

【ComfyUI】MacBook Pro 安装(Intel 集成显卡)

文章目录 环境概述配置pip镜像配置pip代理git配置&#xff08;选配&#xff09;下载comfyUI代码创建、激活虚拟环境下载依赖安装torchvision启动comfyUI为什么Mac不支持CUDA&#xff0c;即英伟达的显卡&#xff1f;安装Intel工具包 环境 显卡&#xff1a;Intel Iris Plus Grap…...

HTTPS 加密全过程

加密协议以前是SSL,现在都是TLS, 而证书现在大多数都是SSL证书 抓包流程: TCP三次握手过后, 客户端发送Client Hello 服务器相应Server Hello 服务器再次响应发送证书: 服务器再发送公钥:...

联邦学习综述二

联邦学习漫画 联邦学习漫画链接: https://federated.withgoogle.com/ Federated Analytics: Collaborative Data Science without Data Collection 博客链接: https://blog.research.google/2020/05/federated-analytics-collaborative-data.html 本篇博客介绍了联邦分析&a…...

Idea本地跑flink任务时,总是重复消费kafka的数据(kafka->mysql)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Idea中执行任务时&#xff0c;没法看到JobManager的错误&#xff0c;以至于我以为是什么特殊的原因导致任务总是反复消费。在close方法中&#xff0c;增加日志&#xff0c;发现jdbc连接被关闭了。 重新…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...