使用Tensorrt的一般步骤
使用Tensorrt的一般步骤
TensorRT的使用包括两个阶段:build and deployment。
build:该阶段主要完成模型转换(从caffe或TensorFlow到TensorRT),如下图所示,在模型转换时会完成前述优化过程中的层间融合,精度校准。这一步的输出是一个针对特定GPU平台和网络模型的优化过的TensorRT模型,这个TensorRT模型可以序列化存储到磁盘或内存中。存储到磁盘中的文件称之为 planfile。
Deploy:该阶段主要完成推理过程,如下图所示。将上一个步骤中的plan文件首先反序列化,并创建一个 runtime engine,然后就可以输入数据(比如测试集或数据集之外的图片),然后输出分类向量结果或检测结果。
以onnx模型为例检测介绍,主要分为3步,如下图所示,第一步是导入模型,这包括从磁盘上保存的文件加载模型,并将其从原始框架转换为TensorRT网络。ONNX是表示深度学习模型的标准,使它们能够在框架之间传输(Caffe2、Chainer、CNTK、paddle、PyTorch和MXNet都支持ONNX格式)。接下来,基于输入模型、目标GPU平台和指定的其他配置参数,构建一个优化的TensorRT引擎。最后一步是向TensorRT引擎提供输入数据以执行推理。
需要用的tensorrt的组件如下:
- ONNX解析器:以ONNX格式的经过训练的模型作为输入,并用TensorRT填充网络对象
- Builder:在TensorRT中获取一个网络并生成一个为目标平台优化的引擎
- Engine:获取输入数据,执行推理并发出推理输出
- Logger:与生成器和引擎关联的对象,用于在生成和推断阶段捕获错误、警告和其他信息
大家可以根据以下coding的例子进行相关实验:
>> git clone https://github.com/parallel-forall/code-samples.git
>> cd code-samples/posts/TensorRT-introduction
>> wget https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz // Get ONNX model and test data
>> tar xvf resnet50v2.tar.gz # unpack model data into resnet50v2 folder
>> apt-get update
>> apt install libprotobuf-dev protobuf-compiler # install protobuf to read the input data which is in .pb format
>> git clone --recursive https://github.com/onnx/onnx.git # pull onnx repository from github
>> cd onnx
>> cmake . # compile and install onnx
>> make install -j12
>> cd ..
>> make # compile the TensorRT C++ sample code
相关文章:

使用Tensorrt的一般步骤
使用Tensorrt的一般步骤 TensorRT的使用包括两个阶段:build and deployment。 build:该阶段主要完成模型转换(从caffe或TensorFlow到TensorRT),如下图所示,在模型转换时会完成前述优化过程中的层间融合&am…...

uniapp apple 苹果登录 离线本地打包
官方文档 uni-app官网 文档写的不全,没有写离线打包流程 加lib 签名里带 sign in with apple hbuilder开关 代码 测试代码,获取app里所有的provider uni.getProvider({service: oauth,success: function (res) {console.log(res.provider)uni.showT…...

【数据库】Sql Server数据迁移,处理自增字段赋值
给自己一个目标,然后坚持一段时间,总会有收获和感悟! 在实际项目开发中,如果遇到高版本导入到低版本,或者低版本转高版本,那么就会出现版本不兼容无法导入,此时通过程序遍历创建表和添加数据方式…...

JOSEF约瑟 矿用一般型选择性漏电继电器 LXY2-660 Φ45 JKY1-660
系列型号: JY82A检漏继电器 JY82B检漏继电器 JY82-380/660检漏继电器 JY82-IV检漏继电器 JY82-2P检漏继电器 JY82-2/3检漏继电器 JJKY检漏继电器 JD型检漏继电器 JY82-IV;JY82J JY82-II;JY82-III JY82-1P;JY82-2PA;JY82-2PB JJB-380;JJB-380/660 JD-12…...
DHCP自动分配IP原理
DHCP自动分配IP原理 1.采用UDP通信方式 2.服务器IP:255.255.255.255; 服务器端口:67, 设备接收端口:68 3.设备向服务器发送DISCOVER信息 4.设备收到服务器回应,且解析正确 5.设备向服务器发送REQUEST请求消息 6.设备接…...

读书笔记-《ON JAVA 中文版》-摘要26[第二十三章 注解]
文章目录 第二十三章 注解1. 基本语法1.1 基本语法1.2 定义注解1.3 元注解 2. 编写注解处理器2.1 编写注解处理器2.2 注解元素2.3 默认值限制 3. 使用javac处理注解4. 基于注解的单元测试5. 本章小结 第二十三章 注解 注解(也被称为元数据)为我们在代码…...

IDEA报Error:java:无效的源发行版13解决方式
出现问题原因:原本项目是spingboot2.0版本开发的,IDEA启动正常,后期新项目使用spingboot3.0,通过原来的IDEA版本及JDK1.8启动报上述错误,以下为版本文件 解决方式: 项目背景:项目已经上线&…...

基于SpringBoot的健身房管理系统
目录 前言 一、技术栈 二、系统功能介绍 会员信息管理 员工信息管理 会员卡类型管理 健身项目管理 会员卡管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步…...

竞赛选题 深度学习 植物识别算法系统
文章目录 0 前言2 相关技术2.1 VGG-Net模型2.2 VGG-Net在植物识别的优势(1) 卷积核,池化核大小固定(2) 特征提取更全面(3) 网络训练误差收敛速度较快 3 VGG-Net的搭建3.1 Tornado简介(1) 优势(2) 关键代码 4 Inception V3 神经网络4.1 网络结构 5 开始训练5.1 数据集…...

希尔贝壳受邀参加《人工智能开发平台通用能力要求 第4部分:大模型技术要求》标准第一次研讨会
随着大模型技术与经验的不断累积,该方向也逐渐从聚焦技术突破,到关注开发、部署、应用的全流程工程化落地。为完善人工智能平台标准体系建设,满足产业多样化需求,2023年9月7日,中国信通院云大所在线上召开《人工智能开…...

虹科方案 | AR助力仓储物流突破困境:规模化运营与成本节约
文章来源:虹科数字化AR 点击阅读原文:https://mp.weixin.qq.com/s/xis_I5orLb6RjgSokEhEOA 虹科方案一览 HongKe DigitalizationAR 当今的客户体验要求企业在人员、流程和产品之间实现全面的连接。为了提升整个组织的效率并提高盈利能力,物流…...

spring容器ioc和di
spring ioc 容器的创建 BeanFactory 接口提供了一种高级配置机制,能够管理任何类型的对象,它是SpringIoC容器标准化超接口! ApplicationContext 是 BeanFactory 的子接口。它扩展了以下功能: 更容易与 Spring 的 AOP 功能集成消…...
Maven 仓库地址
一、Maven 中央仓库地址 http://www.sonatype.org/nexus/http://mvnrepository.com/ (本人推荐仓库)http://repo1.maven.org/maven2 二、Maven 中央仓库地址大全 1、阿里中央仓库(首选推荐) <repository> <id>al…...

【2023研电赛】安谋科技企业命题特别奖:面向独居老人的智能居家监护系统
本文为2023年第十八届中国研究生电子设计竞赛安谋科技企业命题特别奖分享,参加极术社区的【有奖活动】分享2023研电赛作品扩大影响力,更有丰富电子礼品等你来领!,分享2023研电赛作品扩大影响力,更有丰富电子礼品等你来…...

[Machine learning][Part4] 多维矩阵下的梯度下降线性预测模型的实现
目录 模型初始化信息: 模型实现: 多变量损失函数: 多变量梯度下降实现: 多变量梯度实现: 多变量梯度下降实现: 之前部分实现的梯度下降线性预测模型中的training example只有一个特征属性:…...
LCR 078. 合并 K 个升序链表
LCR 078. 合并 K 个升序链表 题目链接:LCR 078. 合并 K 个升序链表 代码如下: class Solution { public:ListNode* mergeKLists(vector<ListNode*>& lists) {ListNode *lsnullptr;for(int i0;i<lists.size();i){lsmergeList(ls,lists[i])…...

JVM面试题:(三)GC和垃圾回收算法
GC: 垃圾回收算法: GC最基础的算法有三种: 标记 -清除算法、复制算法、标记-压缩算法,我们常用的垃圾回收器一般 都采用分代收集算法。 标记 -清除算法,“标记-清除”(Mark-Sweep)算法,如它的…...
hive建表指定列分隔符为多字符分隔符实战(默认只支持单字符)
1、背景: 后端日志采集完成,清洗入hive表的过程中,发现字段之间的单一字符的分割符号已经不能满足列分割需求,因为字段值本身可能包含分隔符。所以列分隔符使用多个字符列分隔符迫在眉睫。 hive在建表时,通常使用ROW …...
android.app.RemoteServiceException: can‘t deliver broadcast
日常报错记录 android.app.RemoteServiceException: cant deliver broadcast W BroadcastQueue: Cant deliver broadcast to com.broadcast.test(pid 1769). Crashing it.E AndroidRuntime: FATAL EXCEPTION: main E AndroidRuntime: Process: com.broadcast.test, PID: 1769…...

信创办公–基于WPS的EXCEL最佳实践系列 (单元格与行列)
信创办公–基于WPS的EXCEL最佳实践系列 (单元格与行列) 目录 应用背景操作步骤1、插入和删除行和列2、合并单元格3、调整行高与列宽4、隐藏行与列5、修改单元格对齐和缩进6、更改字体7、使用格式刷8、设置单元格内的文本自动换行9、应用单元格样式10、插…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
Django RBAC项目后端实战 - 03 DRF权限控制实现
项目背景 在上一篇文章中,我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统,为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...