当前位置: 首页 > news >正文

竞赛选题 深度学习 植物识别算法系统

文章目录

  • 0 前言
  • 2 相关技术
    • 2.1 VGG-Net模型
    • 2.2 VGG-Net在植物识别的优势
      • (1) 卷积核,池化核大小固定
      • (2) 特征提取更全面
      • (3) 网络训练误差收敛速度较快
  • 3 VGG-Net的搭建
    • 3.1 Tornado简介
      • (1) 优势
      • (2) 关键代码
  • 4 Inception V3 神经网络
    • 4.1 网络结构
  • 5 开始训练
    • 5.1 数据集
    • 5.2 关键代码
    • 5.3 模型预测
  • 6 效果展示
    • 6.1 主页面展示
    • 6.2 图片预测
    • 6.3 三维模型可视化
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):self.render("index.html")def post(self):keras.backend.clear_session()img = Image.open(BytesIO(self.request.files['image'][0]['body']))img = imgb_img = Image.new('RGB', (224, 224), (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = 224 / size[0]new_size = (224, int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))else:rate = 224 / size[1]new_size = (int(size[0] * rate), 224)img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))if self.get_argument("method", "mymodel") == "VGG16":Model = load_model("VGG16.h5")else:Model = load_model("InceptionV3.h5")data = orc_img(Model,b_img)self.write(json.dumps({"code": 200, "data": data}))def make_app():template_path = "templates/"static_path = "./static/"return tornado.web.Application([(r"/", MainHandler),], template_path=template_path, static_path=static_path, debug=True)def run_server(port=8000):tornado.options.parse_command_line()app = make_app()app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")tornado.ioloop.IOLoop.current().start()

4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

    from keras.utils import Sequenceimport mathclass SequenceData(Sequence):def __init__(self, batch_size, target_size, data):# 初始化所需的参数self.batch_size = batch_sizeself.target_size = target_sizeself.x_filenames = datadef __len__(self):# 让代码知道这个序列的长度num_imgs = len(self.x_filenames)return math.ceil(num_imgs / self.batch_size)def __getitem__(self, idx):# 迭代器部分batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]imgs = []y = []for x in batch_x:img = Image.open(x)b_img = Image.new('RGB', self.target_size, (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = self.target_size[0] / size[0]new_size = (self.target_size[0], int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))else:rate = self.target_size[0] / size[1]new_size = (int(size[0] * rate), self.target_size[0])img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))img = b_imgif random.random() < 0.1:img = img.convert("L").convert("RGB")if random.random() < 0.2:img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度if random.random() < 0.2:img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度imgs.append(img.convert("RGB"))x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(float) / 255  # 读取一批图片batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))return x_arrays, batch_y

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

def orc_img(model,image):img =np.array(image)img = np.array([1 - img.astype(float) / 255])predict = model.predict(img)index = predict.argmax()print("CNN预测", index)target = target_name[index]index2 = np.argsort(predict)[0][-2]target2 = target_name[index2]index3 = np.argsort(predict)[0][-3]target3 = target_name[index3]return {"target": target,"predict": "%.2f" % (float(list(predict)[0][index]) * 64),"target2": target2,"predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),}

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛选题 深度学习 植物识别算法系统

文章目录 0 前言2 相关技术2.1 VGG-Net模型2.2 VGG-Net在植物识别的优势(1) 卷积核&#xff0c;池化核大小固定(2) 特征提取更全面(3) 网络训练误差收敛速度较快 3 VGG-Net的搭建3.1 Tornado简介(1) 优势(2) 关键代码 4 Inception V3 神经网络4.1 网络结构 5 开始训练5.1 数据集…...

希尔贝壳受邀参加《人工智能开发平台通用能力要求 第4部分:大模型技术要求》标准第一次研讨会

随着大模型技术与经验的不断累积&#xff0c;该方向也逐渐从聚焦技术突破&#xff0c;到关注开发、部署、应用的全流程工程化落地。为完善人工智能平台标准体系建设&#xff0c;满足产业多样化需求&#xff0c;2023年9月7日&#xff0c;中国信通院云大所在线上召开《人工智能开…...

虹科方案 | AR助力仓储物流突破困境:规模化运营与成本节约

文章来源&#xff1a;虹科数字化AR 点击阅读原文&#xff1a;https://mp.weixin.qq.com/s/xis_I5orLb6RjgSokEhEOA 虹科方案一览 HongKe DigitalizationAR 当今的客户体验要求企业在人员、流程和产品之间实现全面的连接。为了提升整个组织的效率并提高盈利能力&#xff0c;物流…...

spring容器ioc和di

spring ioc 容器的创建 BeanFactory 接口提供了一种高级配置机制&#xff0c;能够管理任何类型的对象&#xff0c;它是SpringIoC容器标准化超接口&#xff01; ApplicationContext 是 BeanFactory 的子接口。它扩展了以下功能&#xff1a; 更容易与 Spring 的 AOP 功能集成消…...

Maven 仓库地址

一、Maven 中央仓库地址 http://www.sonatype.org/nexus/http://mvnrepository.com/ &#xff08;本人推荐仓库&#xff09;http://repo1.maven.org/maven2 二、Maven 中央仓库地址大全 1、阿里中央仓库&#xff08;首选推荐&#xff09; <repository> <id>al…...

【2023研电赛】安谋科技企业命题特别奖:面向独居老人的智能居家监护系统

本文为2023年第十八届中国研究生电子设计竞赛安谋科技企业命题特别奖分享&#xff0c;参加极术社区的【有奖活动】分享2023研电赛作品扩大影响力&#xff0c;更有丰富电子礼品等你来领&#xff01;&#xff0c;分享2023研电赛作品扩大影响力&#xff0c;更有丰富电子礼品等你来…...

[Machine learning][Part4] 多维矩阵下的梯度下降线性预测模型的实现

目录 模型初始化信息&#xff1a; 模型实现&#xff1a; 多变量损失函数&#xff1a; 多变量梯度下降实现&#xff1a; 多变量梯度实现&#xff1a; 多变量梯度下降实现&#xff1a; 之前部分实现的梯度下降线性预测模型中的training example只有一个特征属性&#xff1a…...

LCR 078. 合并 K 个升序链表

LCR 078. 合并 K 个升序链表 题目链接&#xff1a;LCR 078. 合并 K 个升序链表 代码如下&#xff1a; class Solution { public:ListNode* mergeKLists(vector<ListNode*>& lists) {ListNode *lsnullptr;for(int i0;i<lists.size();i){lsmergeList(ls,lists[i])…...

JVM面试题:(三)GC和垃圾回收算法

GC: 垃圾回收算法&#xff1a; GC最基础的算法有三种&#xff1a; 标记 -清除算法、复制算法、标记-压缩算法&#xff0c;我们常用的垃圾回收器一般 都采用分代收集算法。 标记 -清除算法&#xff0c;“标记-清除”&#xff08;Mark-Sweep&#xff09;算法&#xff0c;如它的…...

hive建表指定列分隔符为多字符分隔符实战(默认只支持单字符)

1、背景&#xff1a; 后端日志采集完成&#xff0c;清洗入hive表的过程中&#xff0c;发现字段之间的单一字符的分割符号已经不能满足列分割需求&#xff0c;因为字段值本身可能包含分隔符。所以列分隔符使用多个字符列分隔符迫在眉睫。 hive在建表时&#xff0c;通常使用ROW …...

android.app.RemoteServiceException: can‘t deliver broadcast

日常报错记录 android.app.RemoteServiceException: cant deliver broadcast W BroadcastQueue: Cant deliver broadcast to com.broadcast.test(pid 1769). Crashing it.E AndroidRuntime: FATAL EXCEPTION: main E AndroidRuntime: Process: com.broadcast.test, PID: 1769…...

信创办公–基于WPS的EXCEL最佳实践系列 (单元格与行列)

信创办公–基于WPS的EXCEL最佳实践系列 &#xff08;单元格与行列&#xff09; 目录 应用背景操作步骤1、插入和删除行和列2、合并单元格3、调整行高与列宽4、隐藏行与列5、修改单元格对齐和缩进6、更改字体7、使用格式刷8、设置单元格内的文本自动换行9、应用单元格样式10、插…...

VsCode同时编译多个C文件

VsCode默认只能编译单个C文件&#xff0c;想要编译多个文件&#xff0c;需要额外进行配置 第一种方法 ——> 通过手动指定要编译的文件 g -g .\C文件1 .\C文件2 -o 编译后exe名称 例如我将demo.c和extern.c同时编译得到haha.exe g -g .\demo.c .\extern.c -o haha 第二种…...

Android绑定式服务

Github:https://github.com/MADMAX110/Odometer 启动式服务对于后台操作很合适&#xff0c;不过需要一个更有交互性的服务。 接下来构建这样一个应用&#xff1a; 1、创建一个绑定式服务的基本版本&#xff0c;名为OdometerService 我们要为它增加一个方法getDistance()&#x…...

系统韧性研究(1)| 何谓「系统韧性」?

过去十年&#xff0c;系统韧性作为一个关键问题被广泛讨论&#xff0c;在数据中心和云计算方面尤甚&#xff0c;同时它对赛博物理系统也至关重要&#xff0c;尽管该术语在该领域不太常用。大伙都希望自己的系统具有韧性&#xff0c;但这到底意味着什么&#xff1f;韧性与其他质…...

使用Perl脚本编写爬虫程序的一些技术问题解答

网络爬虫是一种强大的工具&#xff0c;用于从互联网上收集和提取数据。Perl 作为一种功能强大的脚本语言&#xff0c;提供了丰富的工具和库&#xff0c;使得编写的爬虫程序变得简单而灵活。在使用的过程中大家会遇到一些问题&#xff0c;本文将通过问答方式&#xff0c;解答一些…...

SAP内部转移价格(利润中心转移价格)的条件

SAP内部转移价格&#xff08;利润中心转移价格&#xff09; SAP内部转移价格&#xff08;利润中心转移价格&#xff09; SAP内部转移价格&#xff08;利润中心转移价格&#xff09;这个听了很多人说过&#xff0c;但是利润中心转移定价需要具备什么条件。没有找到具体的文档。…...

WRF如何批量输出文件添加或删除文件名后缀

1. 批量添加文件名后缀 #1----批量添加文件名后缀&#xff08;.nc&#xff09;。#指定wrfout文件所在的文件夹 path "/mnt/wtest1/"#列出路径path下所有的文件 file_names os.listdir(path) #遍历在path路径下所有以wrfout_d01开头的文件&#xff0c;在os.path…...

Ubuntu右上角不显示网络的图标解决办法

一.line5改为true sudo vim /etc/NetworkManager/NetworkManager.conf 二.重启网卡 sudo service network-manager stop sudo mv /var/lib/NetworkManager/NetworkManager.state /tmp sudo service network-manager start...

AM@数列极限

文章目录 abstract极限&#x1f47a;极限的主要问题 数列极限数列极限的定义 ( ϵ − N ) (\epsilon-N) (ϵ−N)语言描述极限表达式成立的证明极限发散证明常用数列极限数列极限的几何意义例 函数的极限 abstract 数列极限 极限&#x1f47a; 极限分为数列的极限和函数的极限…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...