语言模型编码中/英文句子格式详解
文章目录
- 前言
- 一、Bert的vocab.txt内容查看
- 二、BERT模型转换方法(vocab.txt)
- 三、vocab内容与模型转换对比
- 四、中文编码
- 总结
前言
最近一直在学习多模态大模型相关内容,特别是图像CV与语言LLM模型融合方法,如llama-1.5、blip、meta-transformer、glm等大模型。其语言模型的中文和英文句子如何编码成计算机识别符号,使我困惑。我查阅资料,也发现很少有博客全面说明。为此,我以该博客记录其整过过程,并附有对应代码供读者参考。
处理语言模型需要将英文或中文等字符表示成模型能识别的符号,为此不同模型会按照某些方法表示,但不同模型转计算机能识别思路是一致的。
一、Bert的vocab.txt内容查看
来源tokenization.py文件内容。
PRETRAINED_VOCAB_ARCHIVE_MAP = {'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
vocab.txt内容:

上图是我截取vocab.txt的内容,基本很多有的符号/数字/运算符/中文/字母/单词等均在该txt文件夹中。
二、BERT模型转换方法(vocab.txt)
加入有2句话,分别为text01与text02(如下),他们会转换vocab.txt中已有的单词形式。其中需要留意:’##符号连接长单词在vocab.txt部件方式,如embeddings表示为['em','##bed','##ding','s']。同时,vocab.txt不存在单词部件会化成最小组件,单个字母(vocab.txt最小部件是字母)。
代码如下:
from pytorch_pretrained_bert import BertTokenizertokenizer = BertTokenizer.from_pretrained('../voccab.txt')text01 = "Here is the sentence I want embeddings for."
text02 = "wish for world peace."
marked_text = "[CLS] " + text01 + " [SEP] " + text02 + " [SEP]"
print('marked_text = ', marked_text)tokenized_text = tokenizer.tokenize(marked_text)
print('tokenized_text = ', tokenized_text)indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)for tup in zip(tokenized_text, indexed_tokens):print("tup = ", tup)
marked_text是将句子使用符号分开表示其句子含义;
tokenized_text表示将句子化成vocab.txt文件提供的部件,其中##bed有单独表示;
tup = (‘[CLS]’, 101)后的内容表示其符号对应的索引。
其结果如下:
marked_text = [CLS] Here is the sentence I want embeddings for. [SEP] wish for world peace. [SEP]
tokenized_text = ['[CLS]', 'here', 'is', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.', '[SEP]', 'wish', 'for', 'world', 'peace', '.', '[SEP]']tup = ('[CLS]', 101)
tup = ('here', 2182)
tup = ('is', 2003)
tup = ('the', 1996)
tup = ('sentence', 6251)
tup = ('i', 1045)
tup = ('want', 2215)
tup = ('em', 7861)
tup = ('##bed', 8270)
tup = ('##ding', 4667)
tup = ('##s', 2015)
tup = ('for', 2005)
tup = ('.', 1012)
tup = ('[SEP]', 102)
tup = ('wish', 4299)
tup = ('for', 2005)
tup = ('world', 2088)
tup = ('peace', 3521)
tup = ('.', 1012)
tup = ('[SEP]', 102)
总结:最终词汇等内容转为对应的索引数字表达。
三、vocab内容与模型转换对比
从图中可知,vocab的索引值总比模型给出索引值小1,这是因为模型从0开始索引,而vocab展示内容从1开始,因此相差1。

再次强调:模型对词汇编码实际为人为给出对应表(如:vocab.txt)所对应的索引,用索引值替换词语。
四、中文编码
以上内容已全部告知读者,模型如何编码句子。而该部分内容是拓展,使用中文编码,查看其结果。
代码如下:
from pytorch_pretrained_bert import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('../voccab.txt')
text01 = "the sentence I want embeddings for."
text02 = "愿世界和平。"
marked_text = "[CLS] " + text01 + " [SEP] " + text02 + " [SEP]"
print('marked_text = ', marked_text)
tokenized_text = tokenizer.tokenize(marked_text)
print('tokenized_text = ', tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
for tup in zip(tokenized_text, indexed_tokens):print("tup = ", tup)
结果如下:
marked_text = [CLS] the sentence I want embeddings for. [SEP] 愿世界和平。 [SEP]
tokenized_text = ['[CLS]', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.', '[SEP]', '[UNK]', '世', '[UNK]', '和', '平', '。', '[SEP]']
tup = ('[CLS]', 101)
tup = ('the', 1996)
tup = ('sentence', 6251)
tup = ('i', 1045)
tup = ('want', 2215)
tup = ('em', 7861)
tup = ('##bed', 8270)
tup = ('##ding', 4667)
tup = ('##s', 2015)
tup = ('for', 2005)
tup = ('.', 1012)
tup = ('[SEP]', 102)
tup = ('[UNK]', 100)
tup = ('世', 1745)
tup = ('[UNK]', 100)
tup = ('和', 1796)
tup = ('平', 1839)
tup = ('。', 1636)
tup = ('[SEP]', 102)
图显示:

可发现,和上面英文句子编码是一样的。
总结
一句话,模型是根据提供对应表,将中/英文句子或符号编译成对应索引,被计算识别。
相关文章:
语言模型编码中/英文句子格式详解
文章目录 前言一、Bert的vocab.txt内容查看二、BERT模型转换方法(vocab.txt)三、vocab内容与模型转换对比四、中文编码总结 前言 最近一直在学习多模态大模型相关内容,特别是图像CV与语言LLM模型融合方法,如llama-1.5、blip、meta-transformer、glm等大…...
【Node.js】路由
基础使用 写法一: // server.js const http require(http); const fs require(fs); const route require(./route) http.createServer(function (req, res) {const myURL new URL(req.url, http://127.0.0.1)route(res, myURL.pathname)res.end() }).listen…...
matlab 2ask 4ask 信号调制
1 matlab 2ask close all clear all clcL =1000;Rb=2822400;%码元速率 Fs =Rb*8; Fc=Rb*30;%载波频率 Ld =L*Fs/Rb;%产生载波信号 t =0:1/Fs:L/Rb;carrier&...
Python利用jieba分词提取字符串中的省市区(字符串无规则)
目录 背景库(jieba)代码拓展结尾 背景 今天的需求就是在一串字符串中提取包含,省、市、区,该字符串不是一个正常的地址;,如下字符串 "安徽省、浙江省、江苏省、上海市,冷运标快首重1kg价格xx元,1.01kg(含)-5kg(不含)续重价…...
MuLogin防关联浏览器帮您一键实现Facebook账号多开
导言: 在当今数字化时代,社交媒体应用程序的普及程度越来越高。Facebook作为全球最大的社交媒体平台之一,拥有数十亿的用户。然而,对于一些用户来说,只拥有一个Facebook账号可能无法满足他们的需求。有时,…...
【C语言】每日一题(半月斩)——day4
目录 选择题 1、设变量已正确定义,以下不能统计出一行中输入字符个数(不包含回车符)的程序段是( ) 2、运行以下程序后,如果从键盘上输入 65 14<回车> ,则输出结果为( &…...
Are you sure you want to continue connecting (yes/no) 每次ssh进
Lunix scp等命令不需要输入yes确认方法_scp不需要确认-CSDN博客 方法一:连接时加入StrictHostKeyCheckingno ssh -o StrictHostKeyCheckingno root192.168.1.100 方法二:修改/etc/ssh/ssh_config配置文件,添加: StrictHostKeyC…...
网络与信息系统安全设计规范
1、总则 1.1、目的 为规范XXXXX单位信息系统安全设计过程,确保整个信息安全管理体系在信息安全设计阶段符合国家相关标准和要求,特制订本规范。 1.2、范围 本规范适用于XXXXX单位在信息安全设计阶段的要求和规范管理。 1.3、职责 网络安全与信息化…...
在Linux怎么用vim实现把一个文件里面的文本复制到另一个文件里面
2023年10月9日,周一下午 我昨天遇到了这个问题,但在网上没找到图文并茂的博客,于是我自己摸索出解决办法后,决定写一篇图文并茂的博客。 情景 假设现在我要用vim把file_transfer.cpp的内容复制到file_transfer.hpp里面 第一步 …...
CCAK—云审计知识证书学习
目录 一、CCAK云审计知识证书概述 二、云治理概述 三、云信任 四、构建云合规计划 <...
3.springcloudalibaba gateway项目搭建
文章目录 前言一、搭建gateway项目1.1 pom配置1.2 新增配置如下 二、新增server服务2.1 pom配置2.2新增测试接口如下 三、测试验证3.1 分别启动两个服务,查看nacos是否注册成功3.2 测试 总结 前言 前面已经完成了springcloudalibaba项目搭建,接下来搭建…...
Debezium日常分享系列之:Debezium 2.3.0.Final发布
Debezium日常分享系列之:Debezium 2.3.0.Final发布 一、重大改变二、PostgreSQL / MySQL 安全连接更改三、JDBC 存储编码更改四、新功能和改进五、Kubernetes 的 Debezium Server Operator六、新的通知子系统七、新的可扩展信号子系统八、JMX 信号和通知集成九、新的…...
js为什么是单线程?
基础 js为什么是单线程? 多线程问题 类比操作系统,多线程问题有: 单一资源多线程抢占,引起死锁问题;线程间同步数据问题; 总结 为了简单: 更简单的dom渲染。js可以操控dom,而一…...
centos安装redis教程
centos安装redis教程 安装的版本为centos7.9下的redis3.2.100版本 1.下载地址 Index of /releases/ 使用xftp将redis传上去。 2.解压 tar -zxvf 文件名.tar.gz 3.安装 首先,确保系统已经安装了GCC编译器和make工具。可以使用以下命令进行安装: sudo y…...
把短信验证码储存在Redis
校验短信验证码 接着上一篇博客https://blog.csdn.net/qq_42981638/article/details/94656441,成功实现可以发送短信验证码之后,一般可以把验证码存放在redis中,并且设置存放时间,一般短信验证码都是1分钟或者90s过期,…...
【已编译资料】基于正点原子alpha开发板的第三篇系统移植
系统移植的三大步骤如下: 系统uboot移植系统linux移植系统rootfs制作 一言难尽,踩了不少坑,当时只是想学习驱动开发,发现必须要将第三篇系统移植弄好才可以学习后面驱动,现将移植好的文件分享出来: 仓库&…...
地下城堡3魂之诗食谱,地下城堡3菜谱37种
地下城堡3魂之诗食谱大全,让你解锁制作各种美食的方法!不同的食材搭配不同的配方制作,食物效果和失效也迥异。但有时候我们可能会不知道如何制作这些食物,下面为您介绍地下城堡3菜谱37种。 关注【娱乐天梯】,获取内部福…...
HDMI 基于 4 层 PCB 的布线指南
HDMI 基于 4 层 PCB 的布线指南 简介 HDMI 规范文件里面规定其差分线阻抗要求控制在 100Ω 15%,其中 Rev.1.3a 里面规定相对放宽了一些,容忍阻抗失控在 100Ω 25%范围内,不要超过 250ps。 通常,在 PCB 设计时,注意控…...
理解Go中的布尔逻辑
布尔数据类型(bool)可以是两个值之一,true或false。布尔值在编程中用于比较和控制程序流程。 布尔值表示与数学逻辑分支相关的真值,它指示计算机科学中的算法。布尔(Boolean)一词以数学家乔治布尔(George Boole)命名,总是以大写字母B开头。 …...
rv1126-rknpu-v1.7.3添加opencv库
rv1126所使用的rknn sdk里默认是不带opencv库的,官方所用的例程里也没有使用opencv,但是这样在进行图像处理的时候有点麻烦了,这里有两种办法: 一是先用python将所需要的图片处理好后在转化为bin格式文件,在使用c或c进行读取&…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
