当前位置: 首页 > news >正文

【Overload游戏引擎细节分析】从视图投影矩阵提取视锥体及overload对视锥体的封装

overoad代码中包含一段有意思的代码,可以从视图投影矩阵逆推出摄像机的视锥体,本文来分析一下原理

一、平面的方程

视锥体是用平面来表示的,所以先看看平面的数学表达。
平面方程可以由其法线N=(A, B, C)和一个点Q=(x0,y0,z0)定义,其形式为:
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_{0})+B(y-y_{0})+C(z-z_{0})=0 A(xx0)+B(yy0)+C(zz0)=0          整理变为: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,       其中 D = − A x 0 − B y 0 − C z 0 D=−Ax_{0}−By_{0}−Cz_{0} D=Ax0By0Cz0
         方程进一步可以将方程归一化:
A A 2 + B 2 + C 2 x + B A 2 + B 2 + C 2 y + C A 2 + B 2 + C 2 z + D A 2 + B 2 + C 2 = 0 \frac{A}{\sqrt{A^{2}+B^{2}+C^{2} } } x + \frac{B}{\sqrt{A^{2}+B^{2}+C^{2} } }y+\frac{C}{\sqrt{A^{2}+B^{2}+C^{2} } }z+\frac{D}{\sqrt{A^{2}+B^{2}+C^{2} } } = 0 A2+B2+C2 Ax+A2+B2+C2 By+A2+B2+C2 Cz+A2+B2+C2 D=0 写成通用格式 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
那么点 p = ( x 1 , y 1 , z 1 ) p=(x_{1}, y_{1}, z_{1}) p=(x1,y1,z1)到平面的距离为:
D = a x 1 + b y 1 + c z 1 + d D=ax_{1}+by_{1}+cz_{1}+d D=ax1+by1+cz1+d
一个平面会将空间分成两个半空间(halfspace),进一步法线的朝向的空间称为正半空间(positive halfspace),法线背离的空间称为反半空间(negative halfspace)。根据D的符号可以判断点的相对位置:

  • D < 0, 点位于反半空间
  • D = 0, 点位于平面上
  • D > 0, 点位于正半空间

这种特性可用于判断点是否在视锥体内部。

二、OpenGL视锥体

视锥体是摄像机能看到的区域,只有在视锥体内的物体才能被看到。其由近平面near、远平面far与周围四个面top、bottom、left、right组成,形成一个平截头体区域。
在这里插入图片描述
不过在构建视锥体时一般不直接输入6个平面的方程,常用另外一组更直观易懂的参数:

  1. fov – 视锥体的垂直张角
  2. Near – 视锥体的近平面距离
  3. Far – 视锥体的远平面距离
  4. aspect – 相机视口的长宽比

具体含义建下图:
在这里插入图片描述

三、Overload对视锥体的封装

Overload对视锥体的封装在文件Frustum.h、Frustum.cpp中。先看其定义:

class Frustum
{
public:/*** 根据视图投影矩阵提取视锥体* @param p_viewProjection*/ void CalculateFrustum(const OvMaths::FMatrix4& _viewProjection);/*** 判断点是不是在视锥体内* @param p_x* @param p_y* @param p_z*/bool PointInFrustum(float p_x, float p_y, float _z) const;/*** 判断球是不是在视锥体内* @param p_x* @param p_y* @param p_z* @param p_radius*/bool SphereInFrustum(float p_x, float p_y, loat p_z, float p_radius) const;/*** 判断立方体是不是在视锥体内* @param p_x* @param p_y* @param p_z* @param p_size*/bool CubeInFrustum(float p_x, float p_y, float _z, float p_size) const;/*** 判断包围球是不是在视锥体内* @param p_boundingSphere* @param p_transform*/bool BoundingSphereInFrustum(const vRendering::Geometry::BoundingSphere& _boundingSphere, const OvMaths::FTransform& _transform) const;/*** 返回近平面*/std::array<float, 4> GetNearPlane() const;/*** 返回远平面*/std::array<float, 4> GetFarPlane() const;
private:float m_frustum[6][4];  // 6个平面的方程参数
};

m_frustum保存着6个平面的方程参数,为了提升操作便利性,其定义了两个枚举作为索引:

enum FrustumSide
{RIGHT = 0,		// The RIGHT side of the frustumLEFT = 1,		// The LEFT	 side of the frustumBOTTOM = 2,		// The BOTTOM side of the frustumTOP = 3,		// The TOP side of the frustumBACK = 4,		// The BACK	side of the frustumFRONT = 5		// The FRONT side of the frustum
};// 平面方程的参数索引
enum PlaneData
{A = 0,				// The X value of the plane's normalB = 1,				// The Y value of the plane's normalC = 2,				// The Z value of the plane's normalD = 3				// The distance the plane is from the origin
};

函数的具体实现在文件Frustum.cpp中,我们先看最基础的判断点是否在视锥体内:

bool OvRendering::Data::Frustum::PointInFrustum(float x, float y, float z) const
{for (int i = 0; i < 6; i++){if (m_frustum[i][A] * x + m_frustum[i][B] * y + m_frustum[i][C] * z + m_frustum[i][D] <= 0){return false;}}return true;
}

定义视锥体的面法线都是朝外的,如果点在视锥体内,点到6个面的距离必须全部小于0。进一步判断球体是否完全在视锥体内,距离必须小于半径的负数。
最后分析一下CalculateFrustum,它是根据一个视图投影矩阵反向构建一个视锥体,具体公式怎么来的可以参考这篇文章,里面将的特别详细:
Fast Extraction of Viewing Frustum Planes from the World View-Projection Matrix
  其本身的代码没啥好说的,无非就是公式的翻译。

相关文章:

【Overload游戏引擎细节分析】从视图投影矩阵提取视锥体及overload对视锥体的封装

overoad代码中包含一段有意思的代码&#xff0c;可以从视图投影矩阵逆推出摄像机的视锥体&#xff0c;本文来分析一下原理 一、平面的方程 视锥体是用平面来表示的&#xff0c;所以先看看平面的数学表达。 平面方程可以由其法线N&#xff08;A, B, C&#xff09;和一个点Q(x0,…...

Linux 安全 - LSM hook点

文章目录 一、LSM file system hooks1.1 LSM super_block hooks1.2 LSM file hooks1.3 LSM inode hooks 二、LSM Task hooks三、LSM IPC hooks四、LSM Network hooks五、LSM Module & System hooks 一、LSM file system hooks 在VFS&#xff08;虚拟文件系统&#xff09;层…...

【iOS逆向与安全】越狱检测与过检测附ida伪代码

首先在网上查找一些检测代码 放入项目运行&#xff0c;用 ida 打开后 F5 得到下面的 __int64 __usercall sub_10001B3F0<X0>(__int64 a1, __int64 a2, __int64 a3, __int64 a4, __int64 a5, __int64 a6, __int64 a7, __int64 a8, __int64 a9, __int64 a10, __int64 a11…...

Android Studio gradle手动下载配置

项目同步时&#xff0c;有时候会遇到Android Studio第一步下载gradle就是连接失败的问题。 这种情况&#xff0c;我们可以手动去gradle官网下载好gradle文件&#xff0c;放置在Android Studio的缓存目录下&#xff0c;这样AS在同步代码时就会自动解压下载好的文件。 步骤如下&…...

ChatGPT Prompting开发实战(十三)

一&#xff0e; 如何评估prompts是否包含有害内容 用户在与ChatGPT交互时提供的prompts可能会包括有害内容&#xff0c;这时可以通过调用OpenAI提供的API来进行判断&#xff0c;接下来给出示例&#xff0c;通过调用模型“gpt-3.5-turbo”来演示这个过程。 prompt示例如下&…...

银河麒麟 ARM 架构 离线安装Docker

1. 下载对应的安装包 进入此地址下载对应的docker 离线安装包 下载地址 将文件上传到服务器 解压此文件 tar zxf docker-18.09.1.tgz将 docker 相关命令拷贝到 /usr/bin&#xff0c;方便直接运行命令 cp docker/* /usr/bin/启动Docker守护程序 dockerd &验证是否安装成…...

虹科科技 | 探索CAN通信世界:PCAN-Explorer 6软件的功能与应用

CAN&#xff08;Controller Area Network&#xff09;总线是一种广泛应用于汽车和工业领域的通信协议&#xff0c;用于实时数据传输和设备之间的通信。而虹科的PCAN-Explorer 6软件是一款功能强大的CAN总线分析工具&#xff0c;为开发人员提供了丰富的功能和灵活性。本文将重点…...

SELECT COUNT(*)会不会导致全表扫描引起慢查询

SELECT COUNT(*)会不会导致全表扫描引起慢查询呢&#xff1f; SELECT COUNT(*) FROM SomeTable 网上有一种说法&#xff0c;针对无 where_clause 的 COUNT(*)&#xff0c;MySQL 是有优化的&#xff0c;优化器会选择成本最小的辅助索引查询计数&#xff0c;其实反而性能最高&…...

英国物联网初创公司【FourJaw】完成180万英镑融资

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;总部位于英国谢菲尔德的物联网初创公司【FourJaw】今日宣布已完成180万英镑融资。 本轮融资完成后&#xff0c;FourJaw的总融资金额已达400万英镑&#xff0c;本轮融资的投资机构包括&#xff1a;…...

许战海战略文库|无增长则衰亡:中小型制造企业增长困境

竞争环境不是匀速变化&#xff0c;而是加速变化。企业的衰退与进化、兴衰更迭在不断发生&#xff0c;这成为一种不可避免的现实。事实上&#xff0c;在产业链竞争中增长困境不分企业大小&#xff0c;而是一种普遍存在的问题&#xff0c;许多收入在1亿至10亿美元间的制造企业也同…...

广州华锐互动:候车室智能数字孪生系统实现交通信息可视化

随着科技的不断发展&#xff0c;数字化技术在各个领域得到了广泛的应用。智慧车站作为一种新型的交通服务模式&#xff0c;通过运用先进的数字化技术&#xff0c;为乘客提供了更加便捷、舒适的出行体验。 将智慧车站与数字孪生大屏结合&#xff0c;可以将实际现实世界的实体车站…...

智慧工地:助力数字建造、智慧建造、安全建造、绿色建造

智慧工地管理系统融合计算机技术、物联网、视频处理、大数据、云计算等&#xff0c;为工程项目管理提供先进的技术手段&#xff0c;构建施工现场智能监控系统&#xff0c;有效弥补传统监理中的缺陷&#xff0c;对人、机、料、法、环境的管理由原来的被动监督变成全方位的主动管…...

增强基于Cortex-M3的MCU以处理480 Mbps高速USB

通用串行总线&#xff08;USB&#xff09;完全取代了PC上的UART&#xff0c;PS2和IEEE-1284并行接口&#xff0c;现在已在嵌入式开发应用程序中得到广泛认可。嵌入式开发系统使用的大多数I / O设备&#xff08;键盘&#xff0c;扫描仪&#xff0c;鼠标&#xff09;都是基于USB的…...

山海鲸汽车需求调研系统:智慧决策的关键一步

随着社会的发展和科技的进步&#xff0c;汽车行业也迎来了新的挑战和机遇。如何更好地满足用户需求、提高产品竞争力成为了汽车制造商们关注的焦点。在这个背景下&#xff0c;山海鲸汽车需求调研互动系统应运而生&#xff0c;为汽车行业赋予了智慧决策的力量。 智慧决策的核心&…...

视频缩放的概念整理-步长数组

最近在读ffmpeg的代码时候&#xff0c;这个接口不是很能看懂int sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[]); 多方请教后&#xff0c;记录结果如…...

TensorFlow入门(二十一、softmax算法与损失函数)

在实际使用softmax计算loss时,有一些关键地方与具体用法需要注意: 交叉熵是十分常用的,且在TensorFlow中被封装成了多个版本。多版本中,有的公式里直接带了交叉熵,有的需要自己单独手写公式求出。如果区分不清楚,在构建模型时,一旦出现问题将很难分析是模型的问题还是交叉熵的使…...

UDP通信:快速入门

UDP协议通信模型演示 UDP API DatagramPacket&#xff1a;数据包对象&#xff08;韭菜盘子&#xff09; public DatagramPacket(byte[] buf, int length, InetAddress address, int port)创建发送端数据包对象 buf&#xff1a;要发送的内容&#xff0c;字节数组 length&…...

修炼k8s+flink+hdfs+dlink(四:k8s(一)概念)

一&#xff1a;概念 1. 概述 1.1 kubernetes对象. k8s对象包含俩个嵌套对象字段。 spec&#xff08;规约&#xff09;&#xff1a;期望状态 status&#xff08;状态&#xff09;&#xff1a;当前状态 当创建对象的时候&#xff0c;会按照spec的状态进行创建&#xff0c;如果…...

redis与 缓存击穿、缓存穿透、缓存雪崩

什么是缓存击穿、缓存穿透、缓存雪崩 缓存击穿、缓存穿透和缓存雪崩是与缓存相关的三种常见问题&#xff0c;它们可以在高并发的应用中导致性能问题。以下是它们的解释&#xff1a; 缓存击穿&#xff08;Cache Miss&#xff09; 缓存击穿指的是在高并发情况下&#xff0c;有大…...

印度网络安全:威胁与应对

随着今年过半&#xff0c;我们需要评估并了解不断崛起的网络威胁复杂性&#xff0c;这些威胁正在改变我们的数字景观。 从破坏性的网络钓鱼攻击到利用人工智能的威胁&#xff0c;印度的网络犯罪正在升级。然而&#xff0c;在高调的数据泄露事件风暴中&#xff0c;我们看到了政…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...