nnunetv2训练报错 ValueError: mmap length is greater than file size
目录
- 报错
- 解决办法
报错
笔者在使用 nnunetv2 进行 KiTS19肾脏肿瘤分割实验的训练步骤中
使用 2d 和3d_lowres 训练都没有问题
nnUNetv2_train 40 2d 0
nnUNetv2_train 40 3d_lowres 0
但是使用 3d_cascade_fullres 和 3d_fullres 训练
nnUNetv2_train 40 3d_cascade_fullres 0
nnUNetv2_train 40 3d_fullres 0
都会报这个异常 ValueError: mmap length is greater than file size
具体报错内容如下:
root@autodl-container-fdb34f8e52-02177b7e:~# nnUNetv2_train 40 3d_cascade_fullres 0
Using device: cuda:0#######################################################################
Please cite the following paper when using nnU-Net:
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
#######################################################################This is the configuration used by this training:
Configuration name: 3d_cascade_fullres{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [525.5, 512.0, 512.0], 'spacing': [0.78126, 0.78125, 0.78125], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True, 'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}These are the global plan.json settings:{'dataset_name': 'Dataset040_KiTS', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.78125, 0.78125], 'original_median_shape_after_transp': [108, 512, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3071.0, 'mean': 102.5714111328125, 'median': 103.0, 'min': -1015.0, 'percentile_00_5': -75.0, 'percentile_99_5': 295.0, 'std': 73.64986419677734}}}2023-10-13 17:22:36.747343: unpacking dataset...
2023-10-13 17:22:40.991390: unpacking done...
2023-10-13 17:22:40.992978: do_dummy_2d_data_aug: False
2023-10-13 17:22:40.997410: Using splits from existing split file: /root/autodl-tmp/nnUNet-master/dataset/nnUNet_preprocessed/Dataset040_KiTS/splits_final.json
2023-10-13 17:22:40.998125: The split file contains 5 splits.
2023-10-13 17:22:40.998262: Desired fold for training: 0
2023-10-13 17:22:40.998355: This split has 168 training and 42 validation cases.
/root/miniconda3/lib/python3.10/site-packages/torch/onnx/symbolic_helper.py:1513: UserWarning: ONNX export mode is set to TrainingMode.EVAL, but operator 'instance_norm' is set to train=True. Exporting with train=True.warnings.warn(
2023-10-13 17:22:45.383066:
2023-10-13 17:22:45.383146: Epoch 0
2023-10-13 17:22:45.383244: Current learning rate: 0.01
Exception in background worker 4:mmap length is greater than file size
Traceback (most recent call last):File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 53, in produceritem = next(data_loader)File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/data_loader.py", line 126, in __next__return self.generate_train_batch()File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/data_loader_3d.py", line 19, in generate_train_batchdata, seg, properties = self._data.load_case(i)File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/nnunet_dataset.py", line 86, in load_casedata = np.load(entry['data_file'][:-4] + ".npy", 'r')File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/npyio.py", line 429, in loadreturn format.open_memmap(file, mode=mmap_mode,File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/format.py", line 937, in open_memmapmarray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,File "/root/miniconda3/lib/python3.10/site-packages/numpy/core/memmap.py", line 267, in __new__mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
ValueError: mmap length is greater than file size
Exception in background worker 2:mmap length is greater than file size
Traceback (most recent call last):File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 53, in produceritem = next(data_loader)File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/data_loader.py", line 126, in __next__return self.generate_train_batch()File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/data_loader_3d.py", line 19, in generate_train_batchdata, seg, properties = self._data.load_case(i)File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/nnunet_dataset.py", line 86, in load_casedata = np.load(entry['data_file'][:-4] + ".npy", 'r')File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/npyio.py", line 429, in loadreturn format.open_memmap(file, mode=mmap_mode,File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/format.py", line 937, in open_memmapmarray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,File "/root/miniconda3/lib/python3.10/site-packages/numpy/core/memmap.py", line 267, in __new__mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
ValueError: mmap length is greater than file size
using pin_memory on device 0
Traceback (most recent call last):File "/root/miniconda3/bin/nnUNetv2_train", line 8, in <module>sys.exit(run_training_entry())File "/root/autodl-tmp/nnUNet-master/nnunetv2/run/run_training.py", line 268, in run_training_entryrun_training(args.dataset_name_or_id, args.configuration, args.fold, args.tr, args.p, args.pretrained_weights,File "/root/autodl-tmp/nnUNet-master/nnunetv2/run/run_training.py", line 204, in run_trainingnnunet_trainer.run_training()File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/nnUNetTrainer/nnUNetTrainer.py", line 1237, in run_trainingtrain_outputs.append(self.train_step(next(self.dataloader_train)))File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 196, in __next__item = self.__get_next_item()File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 181, in __get_next_itemraise RuntimeError("One or more background workers are no longer alive. Exiting. Please check the "
RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message
解决办法
nnunet 作者给出的解决办法,详情请戳
进入指定文件夹中,执行
rm *.npy
相关文章:

nnunetv2训练报错 ValueError: mmap length is greater than file size
目录 报错解决办法 报错 笔者在使用 nnunetv2 进行 KiTS19肾脏肿瘤分割实验的训练步骤中 使用 2d 和3d_lowres 训练都没有问题 nnUNetv2_train 40 2d 0nnUNetv2_train 40 3d_lowres 0但是使用 3d_cascade_fullres 和 3d_fullres 训练 nnUNetv2_train 40 3d_cascade_fullres …...
React知识点系列(2)-每天10个小知识
目录 1. 如何优化 React 应用的性能?你用过哪些性能分析工具?2. 在 React 中,什么是 Context API?你在什么场景下会使用它?3. 你能解释一下什么是 React Fiber 吗?4. 在项目中,你是否使用过 Rea…...

AutoGPT:让 AI 帮你完成任务事情 | 开源日报 No.54
Significant-Gravitas/AutoGPT Stars: 150.4k License: MIT AutoGPT 是开源 AI 代理生态系统的核心工具包。它采用模块化和可扩展的框架,使您能够专注于以下方面: 构建 - 为惊人之作打下基础。测试 - 将您的代理调整到完美状态。查看 - 观察进展成果呈…...

USB 转串口芯片 CH340
目录 1、概述 2、特点 3、封装 4、引脚 6、参数 6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏) 6.2 电气参数(测试条件:TA25℃,VCC5V,不包括连接 USB 总线的引脚&…...

Day 05 python学习笔记
循环 应用:循环轮播图 最基础、最核心 循环:周而复始,谓之循环 (为了代码尽量不要重复) while循环 while的格式 索引定义 while 表达式(只要结果为布尔值即可): 循环体 通过条件的不断变化,从…...

Python如何17行代码画一个爱心
🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...

生产环境中常用Linux命令
太简单的我就不讲解啦,浪费时间,直接将生产中常用的 文章目录 1.总纲2.整机 top3.CPU vmstat3. 内存 free4. 硬盘: df5. 磁盘IO iostat6. 网络IO ifstat7: 内存过高的情景排查 1.总纲 整机:topcpu:vmstat内存:free硬盘:df磁盘io: iostat网络io:ifstat 2.整机 top 首先们要查…...

【使用 TensorFlow 2】03/3 创建自定义损失函数
一、说明 TensorFlow 2发布已经接近5年时间,不仅继承了Keras快速上手和易于使用的特性,同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则:简化概念,海纳百川,构建生态.这是本系列的第三部分,…...
Vue3中使用v-model高级用法参数绑定传值
Vue3中使用v-model高级用法参数绑定传值 单个输入框传值多个输入框传值,一个组件接受多个v-model值 单个输入框传值 App.vue <template><p>{{firstName}}</p><hello-world v-model"firstName"></hello-world> </template><…...
你的工作中,chatGPT可以帮你做什么?
如何在工作中使用 ChatGPT 的 10 种实用方法 现在您已经知道如何开始使用 ChatGPT 并了解其基本功能(提示 -> 响应),让我们探讨如何使用它来大幅提高工作效率。 1. 总结报告、会议记录等 ChatGPT可以快速分析大文本并识别关键点。例如&a…...

k8s简单部署nginx
文章目录 1. 前言2. 部署nginx2.1. **创建一个nginx的Deployment**2.2. **创建一个nginx的service** 3. 总结 1. 前言 前文提要: kubeadm简单搭建k8s集群第三方面板部署k8s 上篇文章我们简单部署了k8s的集群环境,相比一定迫不及待的想部署一个实际应用了…...

小黑子—MyBatis:第四章
MyBatis入门4.0 十 小黑子进行MyBatis参数处理10.1 单个简单类型参数10.1.1 单个参数Long类型10.1.2 单个参数Date类型 10.2 Map参数10.3 实体类参数(POJO参数)10.4 多参数10.5 Param注解(命名参数)10.6 Param注解源码分析 十一 小…...

Docker快速上手:使用Docker部署Drupal并实现公网访问
文章目录 前言1. Docker安装Drupal2. 本地局域网访问3 . Linux 安装cpolar4. 配置Drupal公网访问地址5. 公网远程访问Drupal6. 固定Drupal 公网地址 前言 Dupal是一个强大的CMS,适用于各种不同的网站项目,从小型个人博客到大型企业级门户网站。它的学习…...
React知识点系列(1)-每天10个小知识
目录 1.什么是 React,以及它在前端开发中的优势是什么?2.你是如何组织和管理 React 组件的?3.你能解释一下 React 的生命周期方法吗?你通常在哪个生命周期方法中发起网络请求?4.什么是 React Hooks?你常用哪…...
substring 和 substr 的区别
1、结论 两个方法都用于截取字符串,其用法不同: 1)相同点: ① 都用于截取字符串; ② 第一个参数都是表示提取字符的开始索引位置; 2)不同点: ① 第一个参数的取值范围不同&…...
产品经理的工作职责是什么?
产品经理的工作职责主要包括以下几个方面: 1. 产品策划与定义:产品经理负责制定产品的整体策略和规划,包括产品定位、目标用户、市场需求分析等。他们需要与团队合作,定义产品的功能和特性,明确产品的核心竞争力和差异…...

智能井盖传感器:提升城市安全与便利的利器
在智能化城市建设的浪潮中,WITBEE万宾智能井盖传感器,正以其卓越的性能和创新的科技,吸引着越来越多的关注。本文小编将为大家详细介绍这款产品的独特优势和广阔应用前景。 在我们生活的城市中,井盖可能是一个最不起眼的存在。然而…...

给你一个项目,你将如何开展性能测试工作?
一、性能三连问 1、何时进行性能测试? 性能测试的工作是基于系统功能已经完备或者已经趋于完备之上的,在功能还不够完备的情况下没有多大的意义。因为后期功能完善上会对系统的性能有影响,过早进入性能测试会出现测试结果不准确、浪费测试资…...

点燃市场热情,让产品风靡全球——实用推广策略大揭秘!
文章目录 一、实用推广策略的重要性1. 提高产品知名度和认可度2. 拓展产品市场和用户群体3. 增强企业品牌形象和市场竞争力 二、实用推广策略的种类1. 社交媒体推广2. 定向推广3. 口碑营销4. 内容推广 三、实用推广策略的实施步骤1. 研究目标用户和市场需求,明确产品…...

Python操作Hive数据仓库
Python连接Hive 1、Python如何连接Hive?2、Python连接Hive数据仓库 1、Python如何连接Hive? Python连接Hive需要使用Impala查询引擎 由于Hadoop集群节点间使用RPC通信,所以需要配置Thrift依赖环境 Thrift是一个轻量级、跨语言的RPC框架&…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...