当前位置: 首页 > news >正文

TensorFlow入门(十三、动态图Eager)

一个图(Graph)代表一个计算任务,且在模型运行时,需要把图放入会话(session)里被启动。一旦模型开始运行,图就无法修改了。TensorFlow把这种图一般称为静态图。

动态图是指在Python中代码被调用后,其操作立即被执行的计算。

它与静态图最大的区别是不需要使用session来建立会话。即在静态图中,需要在会话中调用run方法才可以获得某个张量、常量或变量的具体值,而在动态图里,在创建动态图的过程中,默认已经建立了一个session。所有的代码都在该session中进行,而且该session具有进程相同的生命周期。

使用动态图时,直接运行就可以计算得到 它们的具体值,甚至还可以和numpy数组混合计算。它使得TensorFlow的学习变得更简单,也使研发更直观。

Eager Execution是一种命令式编程环境,运行后返回具体的值。一般更多用于研究和实验。它的优点有:

        ①直观的界面,可以自然地组织代码结构并使用Python数据结构。快速迭代小模型和小型数据集

        ②更轻松的调试功能,直接调用操作以检查正在运行的模型并测试更改。使用标准Python调试工具可以进行即时错误报告

        ③自然控制流程。使用Python控制流程而不是图控制流程,简化了动态模型的规范

        ④适用于几乎所有可用的TensorFlow运算

        ⑤它还可以在GPU上运行,提高神经网络的训练速度

激活Eager模式

        激活Eager模式的代码如下:

import tensorflow as tf
tf.enable_eager_execution()

        如果程序的后面需要优化器,也可以在这里先定义:

tfe = tf.contrib.eager

        注意:Eager模式在程序开始就要激活,并且不能与普通模式混用。一旦开启Eager模式便不能撤销,不能实现静态图中关闭session的功能,且只执行一次,无法实现多session操作。这也是动态图的不足之处。如果当前代码只需要一个session来完成的话,可以优先选择动态图Eager来实现。

使用Eager模式

示例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()import numpy as npa = tf.constant([[1,2],[3,4]])
print("a = ",a)b = tf.Variable(np.zeros((2,2)))
print("\n b = ",b)c = [[2.]]
m = tf.matmul(c,c)
print("hello,{}".format(m))


可以看到在Eager执行下,a和b操作后的返回值是tf.Tensor,其包含了具体值。不再像Graph模式下那样只是一个计算图节点的符号句柄。由于Eager模式可以立即看到结果,非常有助于程序debug。

Eager模式下的基本运算

        TensorFlow提供了丰富的操作库,如tf.add,tf.matmul,tf.square等,使用它们生成的结果都是张量Tensor。在Eager模式下,可以直接使用这些操作输出运算结果。

示例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()print(tf.add(1,2))
print(tf.square(8))
print(tf.reduce_sum([1,2,3]))
print(tf.square(2) + tf.square(3))

动态控制流

        在Eager模式下,TensorFlow也可以像Python定义函数一样,自定义函数,实现动态控制流。

示例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()def function(num):counter = tf.constant(0)num = tf.convert_to_tensor(num)for num in range(1,num.numpy() + 2):num = tf.constant(num)if int(num % 2) == 0 and int(num % 4) == 0:print("good")elif int(num % 2) == 0:print("hi")elif int(num % 4) == 0:print("hello")else:print(num.numpy())counter += 1function(16)

        在实际的编程过程中,为了提高效率,也可以在Eager模式下训练模型。

示例代码如下:

import tensorflow as tf
tf.compat.v1.enable_eager_execution()#创建训练数据
Num_Test = 1000
train_X = tf.compat.v1.random_normal([Num_Test])
train_Y = train_X * 5 +2#搭建正向模型
#定义运算结构
def prediction(input,weight,bias):return input * weight + bias#搭建反向模型
def loss(weights,biases):error = prediction(train_X,weights,biases) - train_Yreturn tf.reduce_mean(tf.square(error))def grad(weights,biases):#前向计算,得到loss,同时将操作记录到tape上,用于计算梯度with tf.GradientTape() as tape:loss_value = loss(weights,biases)#反向播放tape,得到梯度return tape.gradient(loss_value,[weights,biases])#定义迭代参数和学习率
train_steps = 200
learning_rate = 0.01#定义学习参数的变量
W = tf.Variable(5.)
B = tf.Variable(10.)print("Initial loss:{:.3f}".format(loss(W,B)))#训练模型
for i in range(train_steps):dW,dB = grad(W,B)W.assign_sub(dW * learning_rate)B.assign_sub(dB * learning_rate)if i % 20 == 0:print("Loss at step {:03d}:{:.3f}".format(i,loss(W,B)))print("Final loss:{:.3f}".format(loss(W,B)))
print("W = {},B = {}".format(W.numpy(),B.numpy()))

相关文章:

TensorFlow入门(十三、动态图Eager)

一个图(Graph)代表一个计算任务,且在模型运行时,需要把图放入会话(session)里被启动。一旦模型开始运行,图就无法修改了。TensorFlow把这种图一般称为静态图。 动态图是指在Python中代码被调用后,其操作立即被执行的计算。 它与静态图最大的区别是不需要使用session来建立会话…...

批量执行insert into 的脚本报2006 - MySQL server has gone away

数据库执行批量数据导入是报“2006 - MySQL server has gone away”错误,脚本并没有问题,只是insert into 的批量操作语句过长导致。 解决办法: Navicat ->工具 ->服务器监控->mysql ——》变量 修改max_allowed_packet大小为512…...

翻译docker官方文档(残缺版)

Build with docker(使用 Docker 技术构建应用程序或系统镜像) Overview (概述) 介绍(instruction) 层次结构(Layers) The order of Dockerfile instructions matters. A Docker build consists of a series of ordered build ins…...

PySpark 概述

文章最前: 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的…...

『heqingchun-ubuntu系统下Qt报错connot find -lGL解决方法』

ubuntu系统下Qt报错connot find -lGL解决方法 问题: Qt报错 connot find -lGL collect2:error:ld returned 1 exit status 解决方式: cd /usr/lib/x86_64-linux-gnu查看一下 ls | grep libGLlibGLdispatch.so.0 libGLdispatch.so.0.0.0 libGLESv2.so.…...

代码整洁之道:程序员的职业素养(十六)

辅导、学徒期与技艺 导师的重要性在职业发展中是不可低估的。尽管最好的计算机科学学位教学计划可以提供坚实的理论基础,但面对实际工作中的挑战,年轻毕业生往往需要更多指导。幸运的是,有许多优秀的年轻人可以通过观察和模仿他们的导师来快…...

OSPF的原理与配置

第1章 OSPF[1] 本章阐述了OSPF协议的特征、术语,OSPF的路由器类型、网络类型、区域类型、LSA类型,OSPF报文的具体内容及作用,描述了OSPF的邻居关系,通过实例让读者掌握OSPF在各种场景中的配置。 本章包含以下内容: …...

uni-app : 生成三位随机数、自定义全局变量、自定义全局函数、传参、多参数返回值

核心代码 function generateRandomNumber() {const min 100;const max 999;// 生成 min 到 max 之间的随机整数// Math.random() 函数返回一个大于等于 0 且小于 1 的随机浮点数。通过将其乘以 (max - min 1),我们得到一个大于等于 0 且小于等于 (max - min 1…...

EF core 如何撤销对对象的更改

一般情况下 DB.SaveChanges() 就可以正常提交更改了. 但是如何撤销更改, 可以使用下面的代码. //撤销更改 //放弃更改. 防止后面的finally出错 DB.ChangeTracker.Entries().Where(e > e.Entity ! null).ToList().ForEach(e > e.State EntityState.Detached);...

以字符串mark作为分隔符,对字符串s进行分割

int main() {string s "How are you?";string mark " ";string tmp;int cur 0, first 0;//找到第一个标记while ((cur s.find_first_of(mark, cur)) ! string::npos){//获取第一个标记前的子串tmp s.substr(first, cur - first);cout << tmp …...

c++day6(菱形继承、虚继承、多态、模板、异常)

今日任务 1.思维导图 2.编程题&#xff1a; 代码&#xff1a; #include <iostream>using namespace std; /*以下是一个简单的比喻&#xff0c;将多态概念与生活中的实际情况相联系&#xff1a; 比喻&#xff1a;动物园的讲解员和动物表演 想象一下你去了一家动物园&a…...

外卖跑腿系统开发的最佳实践和成功案例

外卖跑腿系统的开发既涉及技术实现&#xff0c;也需要考虑用户体验、运营策略和合规性。以下是一些最佳实践和一些成功的案例&#xff0c;以帮助您更好地理解这个领域的要点。 1. 技术框架的选择 选择适合的技术框架是外卖跑腿系统成功的关键。您可以考虑使用以下技术&#…...

python中的range()函数详解

range() 是 Python 内置的一个函数&#xff0c;用于生成一个整数序列。 range([start], [stop], [step])start、stop、step 分别表示序列的起始值、终止值和步长。start 和 step 是可选参数&#xff0c;如果不指定则默认为 0 和 1。 一、range&#xff08;&#xff09;传递不…...

【taro react】 ---- 常用自定义 React Hooks 的实现【四】之遮罩层

1. 问题场景 在实际开发中我们会遇到一个遮罩层会受到多个组件的操作影响,如果我们不采用 redux 之类的全局状态管理,而是选择组件之间的值传递,我们就会发现使用组件的变量来控制组件的显示和隐藏很不方便,更不要说像遮罩层这样一个项目多处使用的公共组件,他的隐藏和显示…...

【git】git命令行

首先要了解git整个流程的一个分类&#xff1a; workspace&#xff1a;工作区staging area&#xff1a;暂存区/缓存区local repository&#xff1a;版本库或本地仓库remote repository&#xff1a;远程仓库 创建仓库 git clone gitgithub.comxxxxxxxxxxxx//拷贝一份远程仓库 …...

centos8 jenkins 搭建和使用

一、安装jenkins 直接war包搭建下载地址&#xff1a;https://get.jenkins.io/war-stable/ 下载稳定长期版本 二、jenkins 启动依赖java, 安装java sdk &#xff0c;好像支持java 11和17版本&#xff0c;21版本不支持会报错 下载sdk地址&#xff0c;https://www.oracle.com/j…...

Hive实战(03)-深入了解Hive JDBC:在大数据世界中实现数据交互

在大数据领域&#xff0c;Hive作为一种数据仓库解决方案&#xff0c;为用户提供了一种SQL接口来查询和分析存储在Hadoop集群中的数据。为了更灵活地与Hive进行交互&#xff0c;我们可以使用Hive JDBC&#xff08;Java Database Connectivity&#xff09;驱动程序。本文将深入探…...

SQL开发笔记之专栏介绍

Sql是用于访问和处理数据库的标准计算机语言&#xff0c;使用SQL访问和处理数据系统中的数据&#xff0c;这类数据库包括&#xff1a;Mysql、PostgresSql、Oracle、Sybase、DB2等等&#xff0c;数据库无非围绕着“增删改查”的核心业务进行开发。并且目前绝大多数的后端程序开发…...

华为OD机考算法题:找终点

目录 题目部分 解读与分析 代码实现 题目部分 题目找终点难度易题目说明给定一个正整数数组&#xff0c;设为nums&#xff0c;最大为100个成员&#xff0c;求从第一个成员开始&#xff0c;正好走到数组最后一个成员&#xff0c;所使用的最少步骤数。 要求&#xff1a; 1.第…...

el-table通过scope.row获取表格每列的值,以及scope.$index

<el-table-column type"selection" width"55"></el-table-column><el-table-column prop"id" label"ID" width"80"></el-table-column><el-table-column prop"name" label"文件名…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...