当前位置: 首页 > news >正文

大型数据集处理之道:深入了解Hadoop及MapReduce原理

在大数据时代,处理海量数据是一项巨大挑战。而Hadoop作为一个开源的分布式计算框架,以其强大的处理能力和可靠性而备受推崇。本文将介绍Hadoop及MapReduce原理,帮助您全面了解大型数据集处理的核心技术。

  1. Hadoop简介
    Hadoop是一个基于Google MapReduce论文和Google文件系统的分布式计算框架,它能够同时处理大规模数据集。Hadoop由以下两个核心组件组成:
  • Hadoop分布式文件系统(Hadoop Distributed File System,简称HDFS):用于存储数据,并提供高可靠性和高吞吐量的数据访问。
  • Hadoop MapReduce:用于将任务分解为多个子任务,并将其分布在集群中的多个计算节点上执行。
  1. MapReduce原理
    MapReduce是Hadoop的核心算法和计算模型,它采用了分而治之(Divide and Conquer)思想。MapReduce模型由两个阶段组成:Map阶段和Reduce阶段。
  • Map阶段:在Map阶段,输入数据被划分为多个小的块,并分配给不同的计算节点进行并行处理。每个计算节点独立地对输入数据进行映射和处理操作,生成的中间结果以键值对的形式输出。
public class Mapper {public void map(Key inputKey, Value inputValue) {// 处理输入数据,并生成中间结果emit(IntermediateKey, IntermediateValue);}
}
  • Reduce阶段:在Reduce阶段,中间结果通过键值对的方式进行合并和归约,最终生成最终结果。
public class Reducer {public void reduce(IntermediateKey intermediateKey, List<IntermediateValue> intermediateValues) {// 处理中间结果,并生成最终结果emit(OutputKey, OutputValue);}
}
  1. 实际操作建议
    以下是一些实际操作建议,帮助您更好地使用Hadoop及MapReduce处理大型数据集:
    建议一:合理划分数据块
    根据数据的大小和计算节点的数量,合理划分数据块,以充分利用计算资源并提高处理效率。
hadoop fs -Ddfs.block.size=128M -put input_data.txt /input/

建议二:编写自定义Mapper和Reducer
根据实际需求,编写自定义的Mapper和Reducer类,实现特定的数据处理逻辑。

public class CustomMapper extends Mapper<Object, Text, Text, IntWritable> {// 实现map函数逻辑// ...
}
public class CustomReducer extends Reducer<Text, IntWritable, Text, IntWritable> {// 实现reduce函数逻辑// ...
}

建议三:选择合适的调度器
根据任务的优先级和集群的资源情况,选择合适的调度器,以提高作业的执行效率。

<property><name>mapred.job.queue.name</name><value>default</value>
</property>
  1. 总结和展望
    Hadoop及MapReduce原理是大型数据集处理的核心技术,通过划分数据块、自定义Mapper和Reducer以及选择合适的调度器,我们能够高效地处理海量数据。
    希望本文对于理解Hadoop及MapReduce原理并应用于大型数据集处理有所帮助。在实践中,建议深入学习Hadoop相关的文档和教程,并通过编写代码示例进行实际操作和调试,进一步提升对于Hadoop及MapReduce的掌握程度。愿您在大数据处理的旅途中取得更大的成功!

相关文章:

大型数据集处理之道:深入了解Hadoop及MapReduce原理

在大数据时代&#xff0c;处理海量数据是一项巨大挑战。而Hadoop作为一个开源的分布式计算框架&#xff0c;以其强大的处理能力和可靠性而备受推崇。本文将介绍Hadoop及MapReduce原理&#xff0c;帮助您全面了解大型数据集处理的核心技术。 Hadoop简介 Hadoop是一个基于Google…...

LCR 095. 最长公共子序列(C语言+动态规划)

1. 题目 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#xff1a;它是由原字符串在不改变字符的相对顺序的情况下删除某些字符&#xff08…...

程序员不写注释:探讨与反思

一、为什么程序员不写注释 当程序员选择不写注释时&#xff0c;通常有一系列常见原因&#xff0c;这些原因可以影响他们的决策和行为。同时&#xff0c;这个决策可能会带来多方面的影响和后果。以下是详细阐述为什么程序员不写注释的常见原因以及这种决策可能导致的影响和后果…...

《论文阅读:Dataset Condensation with Distribution Matching》

点进去这篇文章的开源地址&#xff0c;才发现这篇文章和DC DSA居然是一个作者&#xff0c;数据浓缩写了三篇论文&#xff0c;第一篇梯度匹配&#xff0c;第二篇数据增强后梯度匹配&#xff0c;第三篇匹配数据分布。DC是匹配浓缩数据和原始数据训练一次后的梯度差&#xff0c;DS…...

免费chatGPT工具

发现很多人还是找不到好用的chatGPT工具&#xff0c;这里分享一个邮箱注册即可免费试用。 PromptsZone - 一体化人工智能平台使用 PromptsZone 与 ChatGPT、Claude、AI21 Labs、Google Bard 聊天&#xff0c;并使用 DALL-E、Stable Diffusion 和 Google Imagegen 创建图像&…...

数据分析基础:数据可视化+数据分析报告

数据分析是指通过对大量数据进行收集、整理、处理和分析&#xff0c;以发现其中的模式、趋势和关联&#xff0c;并从中提取有价值的信息和知识。 数据可视化和数据分析报告是数据分析过程中非常重要的两个环节&#xff0c;它们帮助将数据转化为易于理解和传达的形式&#xff0…...

settings.xml的文件配置大全

settings.xml 文件中最常配置的还是这几个标签 localRepository和mirrors settings.xml文件官方文档地址 <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"ht…...

极简c++(7)类的继承

为什么要用继承 子类不必复制父类的任何属性&#xff0c;已经继承下来了&#xff1b;易于维护与编写&#xff1b; 类的继承与派生 访问控制规则 一般只使用Public&#xff01; 构造函数的继承与析构函数的继承 构造函数不被继承&#xff01; 在创建子类对象的时候&…...

DOSBox和MASM汇编开发环境搭建

DOSBox和MASM汇编开发环境搭建 1 安装DOSBox2 安装MASM3 编译测试代码4 运行测试代码5 调试测试代码 本文属于《 X86指令基础系列教程》之一&#xff0c;欢迎查看其它文章。 1 安装DOSBox 下载DOSBox和MASM&#xff1a;https://download.csdn.net/download/u011832525/884180…...

047:mapboxGL本地上传shp文件,在map上解析显示图形

第047个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中本地上传shp文件,利用shapefile读取shp数据,并在地图上显示图形。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共117行)加载shapefile.js方式…...

Windows下DataGrip连接Hive

DataGrip连接Hive 1. 启动Hadoop2. 启动hiveserver2服务3. 启动元数据服务4. 启动DG 1. 启动Hadoop 在控制台中输入start-all.cmd后&#xff0c;弹出下图4个终端&#xff08;注意终端的名字&#xff09;2. 启动hiveserver2服务 单独开一个窗口启动hiveserver2服务&#xff0c;…...

Xshell7和Xftp7超详细下载教程(包括安装及连接服务器附安装包)

1.下载 1.官网地址&#xff1a; XSHELL - NetSarang Website 选择学校免费版下载 2.将XSHELL和XFTP全都下载下来 2.安装 安装过程就是选择默认选项&#xff0c;然后无脑下一步 3.连接服务器 1.打开Xshell7&#xff0c;然后新建会话 2.填写相关信息 出现Connection establi…...

ASP.net数据从Controller传递到视图

最常见的方式是使用模型或 ViewBag。 使用模型传递数据&#xff1a; 在控制器中&#xff0c;创建一个模型对象&#xff0c;并将数据赋值给模型的属性。然后将模型传递给 View 方法。 public class HomeController : Controller {public IActionResult Index(){// 创建模型对…...

c++ 友元函数 友元类

1. 友元函数 1.1 简介 友元函数是在类的声明中声明的非成员函数&#xff0c;它被授予访问类的私有成员的权限。这意味着友元函数可以访问类的私有成员变量和私有成员函数&#xff0c;即使它们不是类的成员。 一个类中&#xff0c;可以将其他类或者函数声明为该类的友元&#…...

Spring推断构造器源码分析

Spring中bean虽然可以通过多种方式&#xff08;Supplier接口、FactoryMethod、构造器&#xff09;创建bean的实例对象&#xff0c;但是使用最多的还是通过构造器创建对象实例&#xff0c;也是我们最熟悉的创建对象的方式。如果有多个构造器时&#xff0c;那Spring是如何推断使用…...

十五、【历史记录画笔工具组】

文章目录 历史记录画笔工具历史记录艺术画笔工具 历史记录画笔工具 历史记录画笔工具很简单&#xff0c;就是将画笔工具嗯&#xff0c;涂抹过的修改过的地方&#xff0c;然后用历史记录画笔工具重新修改回来&#xff0c;比如我们将三叠美元中的一叠用画笔工具先涂抹掉&#xf…...

Spark上使用pandas API快速入门

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名--章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

【WebRTC---源码篇】(十:零)WEBRTC/StreamStatisticianImpl持续更新中)

StreamStatisticianImpl是WebRTC的一个内部实现类&#xff0c;用于统计和管理媒体流的各种统计信息。 StreamStatisticianImpl负责记录和计算以下统计数据&#xff1a; 1. 带宽统计&#xff1a;记录媒体流的发送和接收带宽信息&#xff0c;包括发送比特率、接收比特率、发送丢…...

​调用Lua脚本tostring(xxx)报attempt to call a nil value (global ‘tostring‘

在c程序里调用Lua脚本, 脚本中用到了转字符串 tostring(xxx) str "test" function output(a,b,c)d "a:"..tostring(a).."b:"..tostring(b).."c"..tostring(c)return d end 实际运行会报错&#xff1a; attempt to call a nil v…...

PBA.客户需求分析 需求管理

一、客户需求分析 1 需求的三个层次: Requirement/Wants/Pains 大部分人认为&#xff0c;产品满足不了客户需要&#xff0c;是因为客户告知的需求是错误的&#xff0c;这听起来有一些道理&#xff0c;却没有任何意义。不同角色对于需求的理解是不一样的。在客户的需求和厂家的…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...