当前位置: 首页 > news >正文

2.9 深入GPU硬件架构及运行机制

五、GPU技术要点

1.SMID和SIMT

SIMD(Single Instruction Multiple Data)是单指令多数据,在GPU的ALU(在Core内)单元内,一条指令可以处理多维向量(一般是4D)的数据。比如,有以下shader指令:

float4 c = a + b; // a,b都是float4类型

对于没有SIMD的处理单元,需要4条指令将4个float数值相加,汇编伪代码如下:

ADD c.x, a.x, b.x

ADD c.y, a.y, b.y

ADD c.z, a.z, b.z

ADD c.w, a.w, b.w

但是有了SIMD技术,只需要一条指令即可处理完:

SIMD_ADD c, a, b

for(i=0; i < n ; ++i) c[i] = a[i] + b[i];

SIMT(Single Instruction Multiple Threads,单指令多线程)是SIMD的升级版,可对GPU中单个SM中的多个Core同时处理一个指令,并且每个Core存取的数据可以是不同的。

SIMT_ADD c,a,b

上述指令会被同时送入在单个SM中被编组的所有Core中,同事执行运算,但a、b、c的值可以不一样:

2.co-issue

co-issue是为了解决SIMD运行单元无法充分利用的问题。例如下图,由于float数量的不同,ALU利用率从100%依次下降为75%、50%、25%。

为了解决着色器在低维向量的利用率低的问题,可以通过合并1D与3D与2D的指令。例如下图,DP3指令用了3D数据,ADD指令只有1D数据,co-issue会自动将他们合并,在同一个ALU只需要一个指令周期即可执行完。

但是对于向量运算(Vector ALU),如果其中一个变量既是操作数又是存储数的情况,无法启用co-issue技术:

3.if-else语句

如上图,SM中有8个ALU(Core),由于SIMD的特性,每个ALU的数据都不一样,导致if-else语句在某些ALU中执行的是true分支(黄色),有些ALU执行的是false分支(灰蓝色),这样导致很多ALU的执行周期被浪费掉了(即masked out),拉长了整个执行周期。最坏的情况,同一个SM中只有1/8(8是同一个SM的线程数,不同架构的GPU有所不同)的利用率。

同样,for循环也会导致类似的情况,例如以下shader代码:

void func(int count, int breakNum)
{ 	for(int i = 0; i < count; ++i) 	{ 		if (i == breakNum) 			break; 		else 			// do something 	} 
}

由于每个ALU的count不一样,加上有break分支,导致最快执行完shader的ALU可能是最慢的N分之一的时间,但由于SIMD的特性,最快的那个ALU依然要等待最慢的ALU执行完毕,才能接下一组指令的活!也就是白白浪费了很多时间周期。

4.Early-Z

早期GPU的渲染管线的深度测试是在像素着色器之后才执行(下图),这样会造成很多本不可见的像素执行了耗性能的像素着色器计算。

后来,为了减少像素着色器的额外消耗,将深度测试提至像素着色器之前(下图),这就是Early-Z技术的由来。

Early-Z技术可以将很多无效的像素提前剔除,避免它们进入耗时严重的像素着色器。Early-Z剔除的最小单位不是1像素,而是像素块(pixel quad,2x2个像素)。

但是,以下情况会导致Early-Z失效:

  • 开启Alpha Test:由于Alpha Test需要在像素着色器后面的Alpha Test阶段比较,所以无法在像素着色器之前就决定该像素是否被剔除。
  • 开启Alpha Blend:启用了Alpha混合的像素很多需要与frame buffer做混合,无法执行深度测试,也就无法利用Early-Z技术。
  • 开启Tex Kill:即在shader代码中有像素摒弃指令(DX的discard,OpenGL的clip)。
  • 关闭深度测试。Early-Z是建立在深度测试看开启的条件下,如果关闭了深度测试,也就无法启用Early-Z技术。
  • 开启Multi-Sampling:多采样会影响周边像素,而Early-Z阶段无法得知周边像素是否被裁剪,故无法提前剔除。
  • 以及其它任何导致需要混合后面颜色的操作。

此外,Early-Z技术会导致一个问题:深度数据冲突(depth data hazard)。

例子要结合上图,假设数值深度值5已经经过Early-Z即将写入Frame Buffer,而深度值10刚好处于Early-Z阶段,读取并对比当前缓存的深度值15,结果就是10通过了Early-Z测试,会覆盖掉比自己小的深度值5,最终frame buffer的深度值是错误的结果。

避免深度数据冲突的方法之一是在写入深度值之前,再次与frame buffer的值进行对比:

5.统一着色器架构(Unitfied shader Architecture)

在早期的GPU,顶点着色器和像素着色器的硬件结构是独立的,它们各有各的寄存器、运算单元等部件。这样很多时候,会造成顶点着色器与像素着色器之间任务的不平衡。对于顶点数量多的任务,像素着色器空闲状态多;对于像素多的任务,顶点着色器的空闲状态多(下图)。

于是,为了解决VS和PS之间的不平衡,引入了统一着色器架构(Unified shader Architecture)。用了此架构的GPU,VS和PS用的都是相同的Core。也就是,同一个Core既可以是VS又可以是PS。

6.像素块

5.4中提到的:

32个像素线程将被分成一组,或者说8个2x2的像素块,这是在像素着色器上面的最小工作单元,在这个像素线程内,如果没有被三角形覆盖就会被遮掩,SM中的warp调度器会管理像素着色器的任务。

也就是说,在像素着色器中,会将相邻的四个像素作为不可分隔的一组,送入同一个SM内4个不同的Core。

为什么像素着色器处理的最小单元是2x2的像素块?

推测有以下原因:

1、简化和加速像素分派的工作。

2、精简SM的架构,减少硬件单元数量和尺寸。

3、降低功耗,提高效能比。

4、无效像素虽然不会被存储结果,但可辅助有效像素求导函数。

这种设计虽然有其优势,但同时,也会激化过绘制(Over Draw)的情况,损耗额外的性能。比如下图中,白色的三角形只占用了3个像素(绿色),按我们普通的思维,只需要3个Core绘制3次就可以了。

但是,由于上面的3个像素分别占据了不同的像素块(橙色分隔),实际上需要占用12个Core绘制12次(下图)。

这就会额外消耗300%的硬件性能,导致了更加严重的过绘制情况。

更多详情可以观看虚幻官方的视频教学:实时渲染深入探究。

相关文章:

2.9 深入GPU硬件架构及运行机制

五、GPU技术要点 1.SMID和SIMT SIMD&#xff08;Single Instruction Multiple Data&#xff09;是单指令多数据&#xff0c;在GPU的ALU&#xff08;在Core内&#xff09;单元内&#xff0c;一条指令可以处理多维向量&#xff08;一般是4D&#xff09;的数据。比如&#xff0c…...

【苍穹外卖 | 项目日记】第四天

前言&#xff1a; 今天状态还可以&#xff0c;既有自己实战独立写接口&#xff0c;又听了课&#xff0c;学习了新的知识 目录 前言&#xff1a; 今日完结任务&#xff1a; 今日收获&#xff1a; 实现店铺状态接口 杂项知识点&#xff1a; 总结&#xff1a; 今日完结任务…...

零代码编程:用ChatGPT批量采集bookroo网页上的英文书目列表

bookroo网页上有很多不错的英文图书书目。比如这个关于儿童花样滑冰的书单&#xff1a; https://bookroo.com/explore/books/topics/ice-skating 怎么批量下载下来呢&#xff1f; 这个网页是动态网页&#xff0c;要爬取下来比较麻烦&#xff0c;可以先查看源代码&#xff0c;…...

7.定时器

定时器资源 CC2530有四个定时器TIM1~TIM4和休眠定时器 TIM1 定时器1 是一个独立的16 位定时器&#xff0c;支持典型的定时/计数功能&#xff0c;比如输入捕获&#xff0c;输出比较和PWM 功能。定时器有五个独立的捕获/比较通道。每个通道定时器使用一个I/O 引脚。定时器用于…...

计算机网络 | 网络层

计算机网络 | 网络层 计算机网络 | 网络层功能概述SDN&#xff08;Software-Defined Networking&#xff09;路由算法与路由协议IPv4IPv4 分组IPv4 分组的格式IPv4 数据报分片 参考视频&#xff1a;王道计算机考研 计算机网络 参考书&#xff1a;《2022年计算机网络考研复习指…...

21GA-ELM,遗传算法优化ELM预测,并和优化前后以及真实数值进行对比,确定结果,基于MATLAB平台,程序已经调通,可以直接运行,需要直接拍下。

GA-ELM&#xff0c;遗传算法优化ELM预测&#xff0c;并和优化前后以及真实数值进行对比&#xff0c;确定结果&#xff0c;基于MATLAB平台&#xff0c;程序已经调通&#xff0c;可以直接运行&#xff0c;需要直接拍下。 21matlab时间序列预测极限学习遗传优化算 (xiaohongshu.co…...

287_C++_TaskQueue管理任务队列和定时器(头文件.h)

#ifndef TASKQUEUE_H #define TASKQUEUE_H#include <sys/types.h> #include <stdlib.h> #include <pthread.h>...

Hadoop+Zookeeper+HA错题总结(一)

题目3&#xff1a; 下列哪项通常是hadoop集群运行时的最主要瓶颈&#xff1f;() [单选题] A、CPU B、网络 C、磁盘 IO D、内存 【参考答案】: C 【您的答案】: D 这道题的答案取决于集群的性能&#xff0c;一般来说运行时的主要瓶颈是网络。但是如果集群的磁盘IO性能较差&am…...

React高级特性之context

例1&#xff1a; createContext // 跨组件通信Context引入createContext import React, { createContext } from react// App传数据给组件C App -- A -- C// 1. 创建Context对象 const { Provider, Consumer } createContext()function SonA () {return (<div>我是…...

【OS】操作系统课程笔记 第五章 并发性——互斥、同步和通信

并发性&#xff1a;并发执行的各个进程之间&#xff0c;既有独立性&#xff0c;又有制约性&#xff1b; 独立性&#xff1a;各进程可独立地向前推进&#xff1b; 制约性&#xff1a;一个进程会受到其他进程的影响&#xff0c;这种影响关系可能有3种形式&#xff1a; 互斥&am…...

RabbitMQ概述原理

RabbitMQ是一种消息队列中间件&#xff0c;其主要作用是在应用程序之间传输数据。它基于AMQP&#xff08;高级消息队列协议&#xff09;实现&#xff0c;可以用于不同语言和不同操作系统之间的通信。 RabbitMQ的工作原理是生产者将消息发送到队列中&#xff0c;消费者从队列中接…...

8.Covector Transformation Rules

上一节已知&#xff0c;任意的协向量都可以写成对偶基向量的线性组合&#xff0c;以及如何通过计算基向量穿过的协向量线来获得协向量分量&#xff0c;且看到 协向量分量 以 与向量分量 相反的方式进行变换。 现要在数学上确认协向量变换规则是什么。 第一件事&#xff1a;…...

RustDay04------Exercise[21-30]

21.使用()对变量进行解包 // primitive_types5.rs // Destructure the cat tuple so that the println will work. // Execute rustlings hint primitive_types5 or use the hint watch subcommand for a hint.fn main() {let cat ("Furry McFurson", 3.5);// 这里…...

OpenAI科学家谈GPT-4的潜力与挑战

OpenAI Research Scientist Hyung Won Chung 在首尔国立大学发表的一场演讲。 模型足够大&#xff0c;某些能力才会显现&#xff0c;GPT-4 即将超越拐点并在其能力上实现显着跳跃。GPT-3 和 GPT-4 之间的能力仍然存在显着差距&#xff0c;并且尝试弥合与当前模型的差距可能是无…...

Java电子病历编辑器项目源码 采用B/S(Browser/Server)架构

电子病历&#xff08;EMR,Electronic Medical Record&#xff09;是用电子技术保存、管理、传输和重现的数字化的病人的医疗记录&#xff0c;取代手写纸张病历&#xff0c;将医务人员在医疗活动过程中,使用医疗机构管理系统生成的文字、符号、图表、图形、数据、影像等数字化内…...

使用 AWS DataSync 进行跨区域 AWS EFS 数据传输

如何跨区域EFS到EFS数据传输 部署 DataSync 代理 在可以访问源 EFS 和目标 EFS 的源区域中部署代理。转至AWS 代理 AMI 列表并按 AWS 区域选择您的 AMI。对于 us-west-1&#xff0c;单击 us-west-1 前面的启动实例。 启动实例 2. 选择您的实例类型。AWS 建议使用以下实例类型之…...

设计模式~解释器模式(Interpreter)-19

解释器模式&#xff08;Interpreter Pattern&#xff09;提供了评估语言的语法或表达式的方式&#xff0c;它属于行为型模式。这种模式实现了一个表达式接口&#xff0c;该接口解释一个特定的上下文。这种模式被用在 SQL 解析、符号处理引擎等。 【俺有一个《泡MM真经》&#x…...

对象混入的实现方式

对象混入&#xff08;Object mixins&#xff09;是一种在面向对象编程中用于组合和重用代码的技术。它允许你将一个对象的属性和方法混合&#xff08;或合并&#xff09;到另一个对象中&#xff0c;从而创建一个具有多个来源的对象&#xff0c;这些来源可以是不同的类、原型或其…...

Mac 远程 Ubuntu

1. Iterm2 添加ssh 参考&#xff1a;https://www.javatang.com/archives/2021/11/29/13063392.html 2. Finder 添加远程文件管理 2.1 ubuntu 配置 安装samba sudo apt-get install samba配置 [share]path /home/USER_NAME/shared_directoryavailable yesbrowseable ye…...

黑豹程序员-h5前端录音、播放

H5支持页面中调用录音机进行录音 H5加入录音组件&#xff0c;录音后可以进行播放&#xff0c;并形成录音文件&#xff0c;其采样率固化48000&#xff0c;传言是google浏览器的BUG&#xff0c;它无法改动采样率。 大BUG&#xff0c;目前主流的支持16000hz的采样率。 录音组件 …...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...