当前位置: 首页 > news >正文

2.9 深入GPU硬件架构及运行机制

五、GPU技术要点

1.SMID和SIMT

SIMD(Single Instruction Multiple Data)是单指令多数据,在GPU的ALU(在Core内)单元内,一条指令可以处理多维向量(一般是4D)的数据。比如,有以下shader指令:

float4 c = a + b; // a,b都是float4类型

对于没有SIMD的处理单元,需要4条指令将4个float数值相加,汇编伪代码如下:

ADD c.x, a.x, b.x

ADD c.y, a.y, b.y

ADD c.z, a.z, b.z

ADD c.w, a.w, b.w

但是有了SIMD技术,只需要一条指令即可处理完:

SIMD_ADD c, a, b

for(i=0; i < n ; ++i) c[i] = a[i] + b[i];

SIMT(Single Instruction Multiple Threads,单指令多线程)是SIMD的升级版,可对GPU中单个SM中的多个Core同时处理一个指令,并且每个Core存取的数据可以是不同的。

SIMT_ADD c,a,b

上述指令会被同时送入在单个SM中被编组的所有Core中,同事执行运算,但a、b、c的值可以不一样:

2.co-issue

co-issue是为了解决SIMD运行单元无法充分利用的问题。例如下图,由于float数量的不同,ALU利用率从100%依次下降为75%、50%、25%。

为了解决着色器在低维向量的利用率低的问题,可以通过合并1D与3D与2D的指令。例如下图,DP3指令用了3D数据,ADD指令只有1D数据,co-issue会自动将他们合并,在同一个ALU只需要一个指令周期即可执行完。

但是对于向量运算(Vector ALU),如果其中一个变量既是操作数又是存储数的情况,无法启用co-issue技术:

3.if-else语句

如上图,SM中有8个ALU(Core),由于SIMD的特性,每个ALU的数据都不一样,导致if-else语句在某些ALU中执行的是true分支(黄色),有些ALU执行的是false分支(灰蓝色),这样导致很多ALU的执行周期被浪费掉了(即masked out),拉长了整个执行周期。最坏的情况,同一个SM中只有1/8(8是同一个SM的线程数,不同架构的GPU有所不同)的利用率。

同样,for循环也会导致类似的情况,例如以下shader代码:

void func(int count, int breakNum)
{ 	for(int i = 0; i < count; ++i) 	{ 		if (i == breakNum) 			break; 		else 			// do something 	} 
}

由于每个ALU的count不一样,加上有break分支,导致最快执行完shader的ALU可能是最慢的N分之一的时间,但由于SIMD的特性,最快的那个ALU依然要等待最慢的ALU执行完毕,才能接下一组指令的活!也就是白白浪费了很多时间周期。

4.Early-Z

早期GPU的渲染管线的深度测试是在像素着色器之后才执行(下图),这样会造成很多本不可见的像素执行了耗性能的像素着色器计算。

后来,为了减少像素着色器的额外消耗,将深度测试提至像素着色器之前(下图),这就是Early-Z技术的由来。

Early-Z技术可以将很多无效的像素提前剔除,避免它们进入耗时严重的像素着色器。Early-Z剔除的最小单位不是1像素,而是像素块(pixel quad,2x2个像素)。

但是,以下情况会导致Early-Z失效:

  • 开启Alpha Test:由于Alpha Test需要在像素着色器后面的Alpha Test阶段比较,所以无法在像素着色器之前就决定该像素是否被剔除。
  • 开启Alpha Blend:启用了Alpha混合的像素很多需要与frame buffer做混合,无法执行深度测试,也就无法利用Early-Z技术。
  • 开启Tex Kill:即在shader代码中有像素摒弃指令(DX的discard,OpenGL的clip)。
  • 关闭深度测试。Early-Z是建立在深度测试看开启的条件下,如果关闭了深度测试,也就无法启用Early-Z技术。
  • 开启Multi-Sampling:多采样会影响周边像素,而Early-Z阶段无法得知周边像素是否被裁剪,故无法提前剔除。
  • 以及其它任何导致需要混合后面颜色的操作。

此外,Early-Z技术会导致一个问题:深度数据冲突(depth data hazard)。

例子要结合上图,假设数值深度值5已经经过Early-Z即将写入Frame Buffer,而深度值10刚好处于Early-Z阶段,读取并对比当前缓存的深度值15,结果就是10通过了Early-Z测试,会覆盖掉比自己小的深度值5,最终frame buffer的深度值是错误的结果。

避免深度数据冲突的方法之一是在写入深度值之前,再次与frame buffer的值进行对比:

5.统一着色器架构(Unitfied shader Architecture)

在早期的GPU,顶点着色器和像素着色器的硬件结构是独立的,它们各有各的寄存器、运算单元等部件。这样很多时候,会造成顶点着色器与像素着色器之间任务的不平衡。对于顶点数量多的任务,像素着色器空闲状态多;对于像素多的任务,顶点着色器的空闲状态多(下图)。

于是,为了解决VS和PS之间的不平衡,引入了统一着色器架构(Unified shader Architecture)。用了此架构的GPU,VS和PS用的都是相同的Core。也就是,同一个Core既可以是VS又可以是PS。

6.像素块

5.4中提到的:

32个像素线程将被分成一组,或者说8个2x2的像素块,这是在像素着色器上面的最小工作单元,在这个像素线程内,如果没有被三角形覆盖就会被遮掩,SM中的warp调度器会管理像素着色器的任务。

也就是说,在像素着色器中,会将相邻的四个像素作为不可分隔的一组,送入同一个SM内4个不同的Core。

为什么像素着色器处理的最小单元是2x2的像素块?

推测有以下原因:

1、简化和加速像素分派的工作。

2、精简SM的架构,减少硬件单元数量和尺寸。

3、降低功耗,提高效能比。

4、无效像素虽然不会被存储结果,但可辅助有效像素求导函数。

这种设计虽然有其优势,但同时,也会激化过绘制(Over Draw)的情况,损耗额外的性能。比如下图中,白色的三角形只占用了3个像素(绿色),按我们普通的思维,只需要3个Core绘制3次就可以了。

但是,由于上面的3个像素分别占据了不同的像素块(橙色分隔),实际上需要占用12个Core绘制12次(下图)。

这就会额外消耗300%的硬件性能,导致了更加严重的过绘制情况。

更多详情可以观看虚幻官方的视频教学:实时渲染深入探究。

相关文章:

2.9 深入GPU硬件架构及运行机制

五、GPU技术要点 1.SMID和SIMT SIMD&#xff08;Single Instruction Multiple Data&#xff09;是单指令多数据&#xff0c;在GPU的ALU&#xff08;在Core内&#xff09;单元内&#xff0c;一条指令可以处理多维向量&#xff08;一般是4D&#xff09;的数据。比如&#xff0c…...

【苍穹外卖 | 项目日记】第四天

前言&#xff1a; 今天状态还可以&#xff0c;既有自己实战独立写接口&#xff0c;又听了课&#xff0c;学习了新的知识 目录 前言&#xff1a; 今日完结任务&#xff1a; 今日收获&#xff1a; 实现店铺状态接口 杂项知识点&#xff1a; 总结&#xff1a; 今日完结任务…...

零代码编程:用ChatGPT批量采集bookroo网页上的英文书目列表

bookroo网页上有很多不错的英文图书书目。比如这个关于儿童花样滑冰的书单&#xff1a; https://bookroo.com/explore/books/topics/ice-skating 怎么批量下载下来呢&#xff1f; 这个网页是动态网页&#xff0c;要爬取下来比较麻烦&#xff0c;可以先查看源代码&#xff0c;…...

7.定时器

定时器资源 CC2530有四个定时器TIM1~TIM4和休眠定时器 TIM1 定时器1 是一个独立的16 位定时器&#xff0c;支持典型的定时/计数功能&#xff0c;比如输入捕获&#xff0c;输出比较和PWM 功能。定时器有五个独立的捕获/比较通道。每个通道定时器使用一个I/O 引脚。定时器用于…...

计算机网络 | 网络层

计算机网络 | 网络层 计算机网络 | 网络层功能概述SDN&#xff08;Software-Defined Networking&#xff09;路由算法与路由协议IPv4IPv4 分组IPv4 分组的格式IPv4 数据报分片 参考视频&#xff1a;王道计算机考研 计算机网络 参考书&#xff1a;《2022年计算机网络考研复习指…...

21GA-ELM,遗传算法优化ELM预测,并和优化前后以及真实数值进行对比,确定结果,基于MATLAB平台,程序已经调通,可以直接运行,需要直接拍下。

GA-ELM&#xff0c;遗传算法优化ELM预测&#xff0c;并和优化前后以及真实数值进行对比&#xff0c;确定结果&#xff0c;基于MATLAB平台&#xff0c;程序已经调通&#xff0c;可以直接运行&#xff0c;需要直接拍下。 21matlab时间序列预测极限学习遗传优化算 (xiaohongshu.co…...

287_C++_TaskQueue管理任务队列和定时器(头文件.h)

#ifndef TASKQUEUE_H #define TASKQUEUE_H#include <sys/types.h> #include <stdlib.h> #include <pthread.h>...

Hadoop+Zookeeper+HA错题总结(一)

题目3&#xff1a; 下列哪项通常是hadoop集群运行时的最主要瓶颈&#xff1f;() [单选题] A、CPU B、网络 C、磁盘 IO D、内存 【参考答案】: C 【您的答案】: D 这道题的答案取决于集群的性能&#xff0c;一般来说运行时的主要瓶颈是网络。但是如果集群的磁盘IO性能较差&am…...

React高级特性之context

例1&#xff1a; createContext // 跨组件通信Context引入createContext import React, { createContext } from react// App传数据给组件C App -- A -- C// 1. 创建Context对象 const { Provider, Consumer } createContext()function SonA () {return (<div>我是…...

【OS】操作系统课程笔记 第五章 并发性——互斥、同步和通信

并发性&#xff1a;并发执行的各个进程之间&#xff0c;既有独立性&#xff0c;又有制约性&#xff1b; 独立性&#xff1a;各进程可独立地向前推进&#xff1b; 制约性&#xff1a;一个进程会受到其他进程的影响&#xff0c;这种影响关系可能有3种形式&#xff1a; 互斥&am…...

RabbitMQ概述原理

RabbitMQ是一种消息队列中间件&#xff0c;其主要作用是在应用程序之间传输数据。它基于AMQP&#xff08;高级消息队列协议&#xff09;实现&#xff0c;可以用于不同语言和不同操作系统之间的通信。 RabbitMQ的工作原理是生产者将消息发送到队列中&#xff0c;消费者从队列中接…...

8.Covector Transformation Rules

上一节已知&#xff0c;任意的协向量都可以写成对偶基向量的线性组合&#xff0c;以及如何通过计算基向量穿过的协向量线来获得协向量分量&#xff0c;且看到 协向量分量 以 与向量分量 相反的方式进行变换。 现要在数学上确认协向量变换规则是什么。 第一件事&#xff1a;…...

RustDay04------Exercise[21-30]

21.使用()对变量进行解包 // primitive_types5.rs // Destructure the cat tuple so that the println will work. // Execute rustlings hint primitive_types5 or use the hint watch subcommand for a hint.fn main() {let cat ("Furry McFurson", 3.5);// 这里…...

OpenAI科学家谈GPT-4的潜力与挑战

OpenAI Research Scientist Hyung Won Chung 在首尔国立大学发表的一场演讲。 模型足够大&#xff0c;某些能力才会显现&#xff0c;GPT-4 即将超越拐点并在其能力上实现显着跳跃。GPT-3 和 GPT-4 之间的能力仍然存在显着差距&#xff0c;并且尝试弥合与当前模型的差距可能是无…...

Java电子病历编辑器项目源码 采用B/S(Browser/Server)架构

电子病历&#xff08;EMR,Electronic Medical Record&#xff09;是用电子技术保存、管理、传输和重现的数字化的病人的医疗记录&#xff0c;取代手写纸张病历&#xff0c;将医务人员在医疗活动过程中,使用医疗机构管理系统生成的文字、符号、图表、图形、数据、影像等数字化内…...

使用 AWS DataSync 进行跨区域 AWS EFS 数据传输

如何跨区域EFS到EFS数据传输 部署 DataSync 代理 在可以访问源 EFS 和目标 EFS 的源区域中部署代理。转至AWS 代理 AMI 列表并按 AWS 区域选择您的 AMI。对于 us-west-1&#xff0c;单击 us-west-1 前面的启动实例。 启动实例 2. 选择您的实例类型。AWS 建议使用以下实例类型之…...

设计模式~解释器模式(Interpreter)-19

解释器模式&#xff08;Interpreter Pattern&#xff09;提供了评估语言的语法或表达式的方式&#xff0c;它属于行为型模式。这种模式实现了一个表达式接口&#xff0c;该接口解释一个特定的上下文。这种模式被用在 SQL 解析、符号处理引擎等。 【俺有一个《泡MM真经》&#x…...

对象混入的实现方式

对象混入&#xff08;Object mixins&#xff09;是一种在面向对象编程中用于组合和重用代码的技术。它允许你将一个对象的属性和方法混合&#xff08;或合并&#xff09;到另一个对象中&#xff0c;从而创建一个具有多个来源的对象&#xff0c;这些来源可以是不同的类、原型或其…...

Mac 远程 Ubuntu

1. Iterm2 添加ssh 参考&#xff1a;https://www.javatang.com/archives/2021/11/29/13063392.html 2. Finder 添加远程文件管理 2.1 ubuntu 配置 安装samba sudo apt-get install samba配置 [share]path /home/USER_NAME/shared_directoryavailable yesbrowseable ye…...

黑豹程序员-h5前端录音、播放

H5支持页面中调用录音机进行录音 H5加入录音组件&#xff0c;录音后可以进行播放&#xff0c;并形成录音文件&#xff0c;其采样率固化48000&#xff0c;传言是google浏览器的BUG&#xff0c;它无法改动采样率。 大BUG&#xff0c;目前主流的支持16000hz的采样率。 录音组件 …...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...