当前位置: 首页 > news >正文

代码随想录

前言

代码随想录算法训练营day43


一、Leetcode 1049. 最后一块石头的重量 II

1.题目

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

 

ini

复制代码

如果 x == y,那么两块石头都会被完全粉碎; 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

示例 1:

输入:stones = [2,7,4,1,8,1] 输出:1 解释: 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1], 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1], 组合 2 和 1,得到 1,所以数组转化为 [1,1,1], 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40] 输出:5

提示:

 

css

复制代码

1 <= stones.length <= 30 1 <= stones[i] <= 100

来源:力扣(LeetCode) 链接:leetcode.cn/problems/la…

2.解题思路

方法一:动态规划

记石头的总重量为 sumsum,ki=−1ki​=−1 的石头的重量之和为 negneg,则其余 ki=1ki​=1 的石头的重量之和为 sum−negsum−neg。则有

∑i=0n−1ki⋅stonesi=(sum−neg)−neg=sum−2⋅negi=0∑n−1​ki​⋅stonesi​=(sum−neg)−neg=sum−2⋅neg

要使最后一块石头的重量尽可能地小,negneg 需要在不超过 ⌊sum/2⌋⌊sum/2⌋ 的前提下尽可能地大。因此本问题可以看作是背包容量为 ⌊sum/2⌋⌊sum/2⌋,物品重量和价值均为 stonesistonesi​ 的 0-1 背包问题。

对于该问题,定义二维布尔数组 dpdp,其中 dp[i+1][j]dp[i+1][j] 表示前 ii 个石头能否凑出重量 jj。特别地,dp[0][]dp[0][] 为不选任何石头的状态,因此除了 dp[0][0]dp[0][0] 为真,其余 dp[0][j]dp[0][j] 全为假。

对于第 ii 个石头,考虑凑出重量 jj:

 

css

复制代码

若 j<stones[i]j<stones[i],则不能选第 ii 个石头,此时有 dp[i+1][j]=dp[i][j]dp[i+1][j]=dp[i][j]; 若 j≥stones[i]j≥stones[i],存在选或不选两种决策,不选时有 dp[i+1][j]=dp[i][j]dp[i+1][j]=dp[i][j],选时需要考虑能否凑出重量 j−stones[i]j−stones[i],即 dp[i+1][j]=dp[i][j−stones[i]]dp[i+1][j]=dp[i][j−stones[i]]。若二者均为假则 dp[i+1][j]dp[i+1][j] 为假,否则 dp[i+1][j]dp[i+1][j] 为真。

因此状态转移方程如下:

dp[i+1][j]={dp[i][j],j<stones[i]dp[i][j]∨dp[i][j−stones[i]],j≥stones[i]dp[i+1][j]={dp[i][j],dp[i][j]∨dp[i][j−stones[i]],​j<stones[i]j≥stones[i]​

其中 ∨∨ 表示逻辑或运算。求出 dp[n][]dp[n][] 后,所有为真的 dp[n][j]dp[n][j] 中,最大的 jj 即为 negneg 能取到的最大值。代入 sum−2⋅negsum−2⋅neg 中即得到最后一块石头的最小重量。

3.代码实现

 

java

复制代码

class Solution { public int lastStoneWeightII(int[] stones) { int sum = 0; for (int weight : stones) { sum += weight; } int n = stones.length, m = sum / 2; boolean[][] dp = new boolean[n + 1][m + 1]; dp[0][0] = true; for (int i = 0; i < n; ++i) { for (int j = 0; j <= m; ++j) { if (j < stones[i]) { dp[i + 1][j] = dp[i][j]; } else { dp[i + 1][j] = dp[i][j] || dp[i][j - stones[i]]; } } } for (int j = m;; --j) { if (dp[n][j]) { return sum - 2 * j; } } } }

二、Leetcode 494. 目标和

1.题目

给你一个整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

 

ini

复制代码

例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3 输出:5 解释:一共有 5 种方法让最终目标和为 3 。 -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1 输出:1

提示:

 

scss

复制代码

1 <= nums.length <= 20 0 <= nums[i] <= 1000 0 <= sum(nums[i]) <= 1000 -1000 <= target <= 1000

来源:力扣(LeetCode) 链接:leetcode.cn/problems/ta…

2.解题思路

方法一:回溯

数组 numsnums 的每个元素都可以添加符号 ++ 或 --,因此每个元素有 22 种添加符号的方法,nn 个数共有 2n2n 种添加符号的方法,对应 2n2n 种不同的表达式。当 nn 个元素都添加符号之后,即得到一种表达式,如果表达式的结果等于目标数 targettarget,则该表达式即为符合要求的表达式。

可以使用回溯的方法遍历所有的表达式,回溯过程中维护一个计数器 countcount,当遇到一种表达式的结果等于目标数 targettarget 时,将 countcount 的值加 11。遍历完所有的表达式之后,即可得到结果等于目标数 targettarget 的表达式的数目。

3.代码实现

 

java

复制代码

class Solution { int count = 0; public int findTargetSumWays(int[] nums, int target) { backtrack(nums, target, 0, 0); return count; } public void backtrack(int[] nums, int target, int index, int sum) { if (index == nums.length) { if (sum == target) { count++; } } else { backtrack(nums, target, index + 1, sum + nums[index]); backtrack(nums, target, index + 1, sum - nums[index]); } } }

三、Leetcode 474.一和零

1.题目

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3 输出:4 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = ["10", "0", "1"], m = 1, n = 1 输出:2 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

 

matlab

复制代码

1 <= strs.length <= 600 1 <= strs[i].length <= 100 strs[i] 仅由 '0' 和 '1' 组成 1 <= m, n <= 100

来源:力扣(LeetCode) 链接:leetcode.cn/problems/on…

2.解题思路

方法一:动态规划

这道题和经典的背包问题非常相似,但是和经典的背包问题只有一种容量不同,这道题有两种容量,即选取的字符串子集中的 00 和 11 的数量上限。

经典的背包问题可以使用二维动态规划求解,两个维度分别是物品和容量。这道题有两种容量,因此需要使用三维动态规划求解,三个维度分别是字符串、00 的容量和 11 的容量。

定义三维数组 dpdp,其中 dp[i][j][k]dp[i][j][k] 表示在前 ii 个字符串中,使用 jj 个 00 和 kk 个 11 的情况下最多可以得到的字符串数量。假设数组 strstr 的长度为 ll,则最终答案为 dp[l][m][n]dp[l][m][n]。

当没有任何字符串可以使用时,可以得到的字符串数量只能是 00,因此动态规划的边界条件是:当 i=0i=0 时,对任意 0≤j≤m0≤j≤m 和 0≤k≤n0≤k≤n,都有 dp[i][j][k]=0dp[i][j][k]=0。

当 1≤i≤l1≤i≤l 时,对于 strsstrs 中的第 ii 个字符串(计数从 11 开始),首先遍历该字符串得到其中的 00 和 11 的数量,分别记为 zeroszeros 和 onesones,然后对于 0≤j≤m0≤j≤m 和 0≤k≤n0≤k≤n,计算 dp[i][j][k]dp[i][j][k] 的值。

当 00 和 11 的容量分别是 jj 和 kk 时,考虑以下两种情况:

 

css

复制代码

如果 j<zerosj<zeros 或 k<onesk<ones,则不能选第 ii 个字符串,此时有 dp[i][j][k]=dp[i−1][j][k]dp[i][j][k]=dp[i−1][j][k]; 如果 j≥zerosj≥zeros 且 k≥onesk≥ones,则如果不选第 ii 个字符串,有 dp[i][j][k]=dp[i−1][j][k]dp[i][j][k]=dp[i−1][j][k],如果选第 ii 个字符串,有 dp[i][j][k]=dp[i−1][j−zeros][k−ones]+1dp[i][j][k]=dp[i−1][j−zeros][k−ones]+1,dp[i][j][k]dp[i][j][k] 的值应取上面两项中的最大值。

因此状态转移方程如下:

dp[i][j][k]={dp[i−1][j][k],j<zeros ∣ k<onesmax⁡(dp[i−1][j][k],dp[i−1][j−zeros][k−ones]+1),j≥zeros & k≥onesdp[i][j][k]={dp[i−1][j][k],max(dp[i−1][j][k],dp[i−1][j−zeros][k−ones]+1),​j<zeros ∣ k<onesj≥zeros & k≥ones​

最终得到 dp[l][m][n]dp[l][m][n] 的值即为答案。

由此可以得到空间复杂度为 O(lmn)O(lmn) 的实现。

3.代码实现

 

java

复制代码

class Solution { public int findMaxForm(String[] strs, int m, int n) { int length = strs.length; int[][][] dp = new int[length + 1][m + 1][n + 1]; for (int i = 1; i <= length; i++) { int[] zerosOnes = getZerosOnes(strs[i - 1]); int zeros = zerosOnes[0], ones = zerosOnes[1]; for (int j = 0; j <= m; j++) { for (int k = 0; k <= n; k++) { dp[i][j][k] = dp[i - 1][j][k]; if (j >= zeros && k >= ones) { dp[i][j][k] = Math.max(dp[i][j][k], dp[i - 1][j - zeros][k - ones] + 1); } } } } return dp[length][m][n]; } public int[] getZerosOnes(String str) { int[] zerosOnes = new int[2]; int length = str.length(); for (int i = 0; i < length; i++) { zerosOnes[str.charAt(i) - '0']++; } return zerosOnes; } }

相关文章:

代码随想录

前言 代码随想录算法训练营day43 一、Leetcode 1049. 最后一块石头的重量 II 1.题目 有一堆石头&#xff0c;用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分…...

2核4G游戏服务器推荐(阿里云/腾讯云/华为云)

2核4G游戏服务器推荐&#xff0c;首选腾讯云2核4G5M带宽轻量应用服务器218元一年、阿里云2核4G4M带宽轻量应用服务器297元一年&#xff0c;华为云2核2G3M云耀L服务器95元一年&#xff0c;阿腾云来详细说下2核4G游戏服务器推荐配置大全&#xff1a; 目录 2核4G游戏服务器推荐 …...

SQL标识列实现自动编号的步骤和技巧以及优势

目录 前言: 过程: 1.步骤: 2.标识种子和表示增量: 效果展示:​ 优势: 总结: 前言: 在.NET中的例子里面遇到这么一个问题&#xff0c;不能将NULL插入列‘ID’&#xff0c;表Login.dbo.Scores’;列不允许有NULL值。INSERT失败。这个问题很明显&#xff0c;我在SQL数据库中…...

【Debian】报错:su: Authentication failure

项目场景&#xff1a; 今天我重新刷了一个debian系统。 系统版本&#xff1a; # 查看系统版本 lsb_release -a 我的系统版本&#xff1a; No LSB modules are available. Distributor ID&#xff1a;Debian Description: Debian GNU/Linux 12 &#xff08;bookworm&#xff…...

我测试用的mark down教程

Markdown 教程 欢迎使用 Markdown 你好,Markdown是一种类似 Word 的排版工具,你需要仔细阅读这篇文章,了解一下 Markdown 基础知识。 Markdown 功能和列表演示 Markdown 有以下功能,帮助你用它写博客: 数学公式代码高亮导航功能等等Markdown 的优点: 间接高效大厂支持…...

网络编程基础知识总结——IP,端口,协议

目录 1. 什么是网络编程&#xff1f; 2. 网络编程的三要素 3. IP 3.1 IP地址的概念 3.2 IP地址的分类 3.3 IPv4解析 3.4 Ipv6解析 4. IPv4 的使用细节 5. 特殊IP地址 4. 端口号 5. 协议 5.1 UDP协议 5.2 TCP协议 1. 什么是网络编程&#xff1f; 总的来说就是一句…...

【LeetCode力扣】297. 二叉树的序列化与反序列化

目录 1、题目介绍 2、解题思路 2.1、详细过程图解 2.2、代码描述 2.3、完整代码 1、题目介绍 原题链接&#xff1a;297. 二叉树的序列化与反序列化 - 力扣&#xff08;LeetCode&#xff09; 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,null,null,4,5] 输出&#…...

Linux寄存器+Linux2.6内核进程调度队列+命令行参数+环境变量

目录 一、寄存器 二、Linux2.6内核进程调度队列 &#xff08;一&#xff09;优先级 &#xff08;二&#xff09;活动队列 &#xff08;三&#xff09;过期队列 &#xff08;四&#xff09;active指针和expired指针 三、命令行参数 &#xff08;一&#xff09;举例一 &…...

组合数(2)获取C(n,k)组合数列表的QT实现

1)工程文件 QT coreCONFIG c17 cmdline# You can make your code fail to compile if it uses deprecated APIs. # In order to do so, uncomment the following line. #DEFINES QT_DISABLE_DEPRECATED_BEFORE0x060000 # disables all the APIs deprecated before Qt 6.…...

SparkCore编程RDD

RDD概述 中文名为弹性分布式数据集&#xff0c;是数据处理基本单位。代表一个弹性的&#xff0c;不可变&#xff0c;可分区&#xff0c;里面的数据可并行计算的集合。 RDD和Hadoop MR 的区别&#xff1a; RDD是先明确数据处理流程&#xff0c;数据在行动算子执行前实际上并未…...

VBA技术资料MF69:添加和删除工作表中的分页符

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。我的教程一共九套&#xff0c;分为初级、中级、高级三大部分。是对VBA的系统讲解&#xff0c;从简单的入门&#xff0c;到…...

数字技术助力智慧公厕,让公厕变身为全新创新应用

在如今数字化的时代&#xff0c;数字技术的集成应用已经渗透到了生活的方方面面。其中一个令人瞩目的领域就是智慧公厕。以前只是简单的厕所&#xff0c;如今借助数字技术的力量&#xff0c;智慧公厕变得功能强大、智能高效。接下来&#xff0c;我们将以智慧公厕源头领航厂家广…...

electron 升级 v22 遇到问题

Electron 漏洞 https://mp.weixin.qq.com/s/5LpSJb_5uV8EIDOl3fz9Tw 由于 23以上不在支持win 7 8 8.1 所以我选择安装 v22.3.24 electron 22.3.24 node-sass 6.0.1 sass-loader 10.4.1 对应的版本 npm i node-sass6.0.1 --sass_binary_sitehttps://npm.taobao.org/mirrors…...

跟我学c++中级篇——Pimpl

一、前向声明 前向声明或者前置声明(forward declaration)&#xff0c;这个在c中用得还是比较多的。一般的框架或者库中&#xff0c;经常可以看到在一个类的前面声明了一个类&#xff0c;类似下面这样&#xff1a; class useclass; class mycall{...useclass *us; };前向声明…...

[补题记录] Atcoder Beginner Contest 295(E)

URL&#xff1a;https://atcoder.jp/contests/abc295 目录 E Problem/题意 Thought/思路 Code/代码 E Problem/题意 给定长度为 N 的数组 A。进行如下操作&#xff1a; 若 Ai 0&#xff0c;将 Ai 等概率地变为 1 ~ M 中的任意一个数&#xff1b;对 A 排序&#xff1b; …...

解决git在window11操作很慢,占用很大cpu的问题

【git在window11操作很慢&#xff0c;占用很大cpu&#xff0c;最后也执行失败】 在谷歌输入&#xff1a;git very slow in window 11。通过下面链接终于找到了解决方案&#xff1a; https://www.reddit.com/r/vscode/comments/sulebx/slow_git_in_wsl_after_updating_to_window…...

C++智能指针(二)——weak_ptr初探

文章目录 1. shared_ptr 存在的问题2. 使用weak_ptr2.1 初始化 weak_ptr2.2 访问数据 3. 附录4. 参考文献 1. shared_ptr 存在的问题 与 shared_ptr 的引入要解决普通指针存在的一些问题一样&#xff0c;weak_ptr 的引入&#xff0c;也是因为 shared_ptr 本身在某些情况下&…...

540 - Team Queue (UVA)

题目链接如下&#xff1a; Online Judge 对比刘汝佳的代码&#xff0c;我没有用queue来排整个队伍&#xff0c;因为那样的话遍历整个队伍太麻烦&#xff0c;vector比较方便。但vector删除元素比较耗时&#xff0c;所以就不删了&#xff0c;仅仅用pivot来指代目前队伍的开始。…...

投资组合之如何估值

文章目录 如何估值一、PE估值法1、PE估值法的定义2、参考标准&#xff08;1&#xff09;常规标准&#xff1a;25倍合理市盈率。&#xff08;2&#xff09;同行业对比。&#xff08;3&#xff09;跟历史市盈率相比。 3、PE估值法的适用范围4、PE估值法的优势5、PE估值法的劣势&a…...

2024届通信工程保研经验分享(预推免入营即offer)

2024届通信工程保研经验分享&#xff08;预推免入营即offer&#xff09; BackGround夏令营情况&#xff1a;预推免情况&#xff1a; BackGround 本科院校&#xff1a;末九 专业&#xff1a;通信工程 rank&#xff1a;3/123&#xff08;预推免绩点排名&#xff09;&#xff0…...

L2-025 分而治之 - java

L2-025 分而治之 时间限制 600 ms 内存限制 64 MB 题目描述&#xff1a; 分而治之&#xff0c;各个击破是兵家常用的策略之一。在战争中&#xff0c;我们希望首先攻下敌方的部分城市&#xff0c;使其剩余的城市变成孤立无援&#xff0c;然后再分头各个击破。为此参谋部提供了若…...

Python+高光谱数据预处理-机器学习-深度学习-图像分类-参数回归

涵盖高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。重点解释高光谱数据处理所涉及的基本概念和理论&#xff0c;旨在帮助学员深入理解科学原理。结合Python编程工具&#xff0c;专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题&#xf…...

免费 AI 编程助手 Amazon CodeWhisperer 体验

文章作者&#xff1a;文章作者&#xff1a;米菲爸爸 2022 年 6 月 23 亚马逊云科技就已经推出了 Amazon CodeWhisperer&#xff08;预览版&#xff09;。经过不到一年的测试和 AIGC的飓风在 2023 年 4 月 18 日实时 AI 编程助手 Amazon CodeWhisperer正式可用 Amazon CodeWhis…...

【Linux】从零开始学习Linux基本指令(一)

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;Linux入门 &#x1f525;该文章主要了解Linux操作系统下的基本指令。 目录&#xff1a; ⌛️指令的理解⏳目录和文件的理解⏳一些常见指令✉…...

Java GC 算法

一、概述 理解Java虚拟机垃圾回收机制的底层原理&#xff0c;是成为一个高级Java开发者的基本功。本文从底层的垃圾回收算法开始&#xff0c;着重去阐释不同垃圾回收器在算法设计和实现时的一些技术细节&#xff0c;去探索「why」这一部分&#xff0c;通过对比不同的垃圾回收算…...

vue3 v-html中使用v-viewer

安装&#xff1a;npm install v-viewernext 在main.js中配置 import “viewerjs/dist/viewer.css”; import Viewer from “v-viewer”; app.use(Viewer, { Options: { inline: true, //默认值&#xff1a;false。启用内联模式。 button: true, //在查看器的右上角显示按钮。 …...

Leetcode算法解析——查找总价格为目标值的两个商品

1. 题目链接&#xff1a;LCR 179. 查找总价格为目标值的两个商品 2. 题目描述&#xff1a; 商品价格按照升序记录于数组 price。请在购物车中找到两个商品的价格总和刚好是 target。若存在多种情况&#xff0c;返回任一结果即可。 示例 1&#xff1a; 输入&#xff1a;price …...

unity游戏开发引擎unity3D开发

Unity&#xff08;也被称为Unity3D&#xff09;是一款强大的跨平台游戏引擎&#xff0c;用于开发2D和3D游戏&#xff0c;以及其他交互式应用程序。以下是Unity游戏开发的一般步骤&#xff1a; 安装和设置Unity&#xff1a; 首先&#xff0c;您需要下载并安装Unity。确保选择适…...

iptables

目录 iptables 匹配规则&#xff1a;由上到下依次匹配&#xff0c;一旦匹配不再匹配 参数 知识点 REJECT与DROP REJECT与DROP的区别 当使用的时REJECT时&#xff0c;客户端访问迅速返回的值是拒绝连接 当使用的是DROP时&#xff0c;返回的时连接超时 REJECT与drop适用…...

竞赛 深度学习LSTM新冠数据预测

文章目录 0 前言1 课题简介2 预测算法2.1 Logistic回归模型2.2 基于动力学SEIR模型改进的SEITR模型2.3 LSTM神经网络模型 3 预测效果3.1 Logistic回归模型3.2 SEITR模型3.3 LSTM神经网络模型 4 结论5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 …...