【Codeforces】 CF1097G Vladislav and a Great Legend
题目链接
CF方向
Luogu方向
题目解法
首先一个套路是普通幂转下降幂(为什么?因为观察到 k k k 很小,下降幂可以转化组合数问题,从而 d p dp dp 求解)
即 f ( X ) k = ∑ i = 0 k { k i } i ! ( f ( X ) i ) f(X)^k=\sum\limits_{i=0}^{k}{k\brace i}i!\binom{f(X)}{i} f(X)k=i=0∑k{ik}i!(if(X))
现在的问题是对于所有生成树求出中间选 i i i 条边的方案数
我们令非空顶点的点集为关键点,其他生成树上的点为包含点
考虑树形 d p dp dp,令 f i , j f_{i,j} fi,j 表示在 i i i 的子树中选出至少 1 1 1 个关键点,且与 i i i 连通的生成树中选出 j j j 条边的方案数
考虑转移:
- v v v 子树中没有关键点
f u , i → f u , i f_{u,i}\to f_{u,i} fu,i→fu,i,不能计入答案计算,因为没有改变关键点集合 - 只有 v v v 子树中的关键点组成
f v , i + f v , i − 1 → f u , i f_{v,i}+f_{v,i-1}\to f_{u,i} fv,i+fv,i−1→fu,i,不能计入答案计算,因为这个关键点集合在 v v v 时已经计算过 - u , v u,v u,v 子树中均有关键点
f u , i ∗ f v , j → f u , i + j & f u , i + j + 1 f_{u,i}*f_{v,j}\to f_{u,i+j}\&f_{u,i+j+1} fu,i∗fv,j→fu,i+j&fu,i+j+1,可以计入答案计算,因为改变了关键点集合
根据树形 d p dp dp 的时间复杂度计算,时间复杂度为 O ( n k ) O(nk) O(nk)
#include <bits/stdc++.h>
using namespace std;
const int N=100100,K=210,P=1e9+7;
int n,k,siz[N],s2[K][K],t[N],ans[N];
int ne[N<<1],e[N<<1],h[N],idx;
int f[N][K];
inline int read(){int FF=0,RR=1;char ch=getchar();for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;return FF*RR;
}
inline void add(int x,int y){ e[idx]=y,ne[idx]=h[x],h[x]=idx++;}
inline void inc(int &x,int y){ x+=y;if(x>=P) x-=P;}
void dfs(int u,int fa){siz[u]=1,f[u][0]=1;for(int i=h[u];~i;i=ne[i]){int v=e[i];if(v==fa) continue;dfs(v,u);for(int j=0;j<=k;j++) t[j]=f[u][j];for(int j=0;j<=k;j++){inc(t[j],f[v][j]);if(j) inc(t[j],f[v][j-1]);}for(int p=0,mxp=min(k,siz[u]);p<=mxp;p++) for(int q=0,mxq=min(k-p,siz[v]);q<=mxq;q++){int coef=1ll*f[u][p]*f[v][q]%P;inc(t[p+q],coef),inc(t[p+q+1],coef);inc(ans[p+q],coef),inc(ans[p+q+1],coef);}siz[u]+=siz[v];for(int j=0;j<=k;j++) f[u][j]=t[j];}
}
int main(){n=read(),k=read();s2[0][0]=1;for(int i=1;i<=k;i++) for(int j=1;j<=i;j++) s2[i][j]=(s2[i-1][j-1]+1ll*s2[i-1][j]*j)%P;memset(h,-1,sizeof(h));for(int i=1;i<n;i++){int x=read(),y=read();add(x,y),add(y,x);}dfs(1,-1);int ANS=0;for(int i=1,fac=1;i<=k;i++,fac=1ll*fac*i%P) ANS=(ANS+1ll*ans[i]*s2[k][i]%P*fac)%P;printf("%d\n",ANS);return 0;
}相关文章:
【Codeforces】 CF1097G Vladislav and a Great Legend
题目链接 CF方向 Luogu方向 题目解法 首先一个套路是普通幂转下降幂(为什么?因为观察到 k k k 很小,下降幂可以转化组合数问题,从而 d p dp dp 求解) 即 f ( X ) k ∑ i 0 k { k i } i ! ( f ( X ) i ) f(X)^k…...
力扣每日一题36:有效的数独
题目描述: 请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考…...
钉钉数字校园小程序开发:开启智慧教育新时代
随着信息技术的快速发展和校园管理的日益复杂化,数字校园已成为现代教育的重要趋势。钉钉数字校园小程序作为一种创新应用,以其专业性、思考深度和逻辑性,为学校提供了全新的管理、教学和沟方式。本文从需求分析、技术实现和应用思考三个方面…...
数据结构与算法--其他算法
数据结构与算法--其他算法 1 汉诺塔问题 2 字符串的全部子序列 3 字符串的全排列 4 纸牌问题 5 逆序栈问题 6 数字和字符串转换问题 7 背包问题 8 N皇后问题 暴力递归就是尝试 1,把问题转化为规模缩小了的同类问题的子问题 2,有明确的不需要继续…...
矩阵键盘行列扫描
/*----------------------------------------------- 内容:如计算器输入数据形式相同 从右至左 使用行列扫描方法 ------------------------------------------------*/ #include<reg52.h> //包含头文件,一般情况不需要改动,头文件包含…...
unity 实现拖动ui填空,并判断对错
参考:https://ask.csdn.net/questions/7971448 根据自己的需求修改为如下代码 使用过程中,出现拖动ui位置错误的情况,修改为使用 localPosition 但是吸附到指定位置却需要用的position public class DragAndDrop : MonoBehaviour, IBeginDr…...
《机器学习》第5章 神经网络
文章目录 5.1 神经元模型5.2 感知机与多层网络5.3 误差逆传播算法5.4 全局最小与局部最小5.5 其他常见神经网络RBF网络ART网络SOM网络级联相关网络Elman网络Boltzmann机 5.6 深度学习 5.1 神经元模型 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它…...
FPGA project : flash_erasure
SPI是什么: SPI(Serial Peripheral Interface,串行外围设备接口)通讯协议,是Motorola公司提出的一种同步串行接口技术,是一种高速、全双工、同步通信总线,在芯片中只占用四根管脚用来控制及数据…...
AC修炼计划(AtCoder Regular Contest 166)
传送门:AtCoder Regular Contest 166 - AtCoder 一直修炼cf,觉得遇到了瓶颈了,所以想在atcode上寻求一些突破,今天本来想尝试vp AtCoder Regular Contest 166,但结局本不是很好,被卡了半天,止步…...
Android---Android 是如何通过 Activity 进行交互的
相信对于 Android 工程师来说,startActivity 就像初恋一般。要求低,见效快,是每一个菜鸟 Android 工程师迈向高级 Android 工程师的必经阶段。经过这么多年的发展,startActivity 在 google 的调教下已经变得愈发成熟,对…...
【论文解读】单目3D目标检测 MonoCon(AAAI2022)
本文分享单目3D目标检测,MonoCon模型的论文解读,了解它的设计思路,论文核心观点,模型结构,以及效果和性能。 目录 一、MonoCon简介 二、论文核心观点 三、模型框架 四、模型预测信息与3D框联系 五、损失函数 六、…...
Angular知识点系列(5)-每天10个小知识
目录 41. Angular的路由守卫42. 处理文件的上传和下载43. Angular的动画系统44. 使用第三方库和选择评估45. 性能优化46. AOT和JIT编译47. 处理响应式布局和适配不同屏幕尺寸48. Angular的国际化(i18n)49. Angular的PWA开发50. 使用Angular Material或其…...
基于海洋捕食者优化的BP神经网络(分类应用) - 附代码
基于海洋捕食者优化的BP神经网络(分类应用) - 附代码 文章目录 基于海洋捕食者优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.海洋捕食者优化BP神经网络3.1 BP神经网络参数设置3.2 海洋捕食者算法应用 4…...
Lift, Splat, Shoot图像BEV安装与模型详解
1 前言 计算机视觉算法通常使用图像是作为输入并输出预测的结果,但是对结果所在的坐标系却并不关心,例如图像分类、图像分割、图像检测等任务中,输出的结果均在原始的图像坐标系中。因此这种范式不能很好的与自动驾驶契合。 在自动驾驶中,多个相机传感器的数据一起作为输…...
MySQL简介
数据库管理系统 1、关系型数据库管理系统: Oracle:Oracle是一种商业级关系型数据库管理系统,支持高可用性、高安全性以及广泛的企业级应用需求。SQL Server:SQL Server是Microsoft开发的企业级关系型数据库管理系统,广泛应用于Windows环境下的软件开发。MySQL:MySQL是一…...
php代码优化---本人的例子
直接上货: 1:数据统计 店铺数量、提现金额、收益金额、用户数量 旧: // //店铺// $storey db( store )->whereTime( addtime, yesterday )->count();//昨天// $stored db( store )->whereTime( addtime, d )->count();//今天…...
EMC Unity存储(VNXe) service Mode和Normal Mode的一些说明
本文介绍下EMC unity存储设备(也包含VNXe存储设备)的两种工作模式: Service mode:也叫做rescue mode,存储OS工作不正常或者有其他故障,就会进入这个模式,无法对外提供服务Normal modeÿ…...
基于全景运动感知的飞行视觉脑关节神经网络全方位碰撞检测
https:/doi.org/10.1155/2023/5784720 摘要: 生物系统有大量的视觉运动检测神经元,其中一些神经元可以优先对特定的视觉区域做出反应。然而,关于如何使用它们来开发用于全向碰撞检测的神经网络模型,很少有人做过工作。为此&#…...
Java 继承与实现
一、继承(extends) 1.1 继承概念 继承是面向对象的基本特征,它允许子类继承父类的特征和行为,以提高代码的复用率和维护性等。下面一张图生动地展示了继承和类之间的关系: 继承图 上图中,“动物”、“食草…...
Unity 3D基础——计算两个物体之间的距离
1.在场景中新建两个 Cube 立方体,在 Scene 视图中将两个 Cude的位置错开。 2.新建 C# 脚本 Distance.cs(写完记得保存) using System.Collections; using System.Collections.Generic; using UnityEngine;public class Distance : MonoBehav…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
